Near-Field Spot for Localized Light-Excitation of a Single Fluorescent Molecule

Muhammad Shemyal Nisar , Yujun Cui , Kaitong Dang , Liyong Jiang , Xiangwei Zhao

Photonic Sensors ›› 2019, Vol. 10 ›› Issue (4) : 364 -374.

PDF
Photonic Sensors ›› 2019, Vol. 10 ›› Issue (4) : 364 -374. DOI: 10.1007/s13320-020-0593-2
Regular

Near-Field Spot for Localized Light-Excitation of a Single Fluorescent Molecule

Author information +
History +
PDF

Abstract

Zero-mode waveguides have become important tools for the detection of single molecules. There are still, however, serious challenges because large molecules need to be packed into nano-holes. To circumvent this problem, we investigate and numerically simulate a novel planar sub-wavelength 3-dimension (3D) structure, which is named as near-field spot. It enables the detection of a single molecule in highly concentrated solutions. The near-field spot can produce evanescent waves at the dielectric/water interface, which exponentially decay as they travel away from the dielectric/water interface. These evanescent waves are keys for the detection of fluorescently tagged single molecules. A numerical simulation of the proposed device shows that the performance is comparable with a zero-mode waveguide. Additional degrees-of-freedom, however, can potentially supersede its performance.

Keywords

Plasmonics / single fluorescence molecule / evanescent field / zero-mode waveguide

Cite this article

Download citation ▾
Muhammad Shemyal Nisar, Yujun Cui, Kaitong Dang, Liyong Jiang, Xiangwei Zhao. Near-Field Spot for Localized Light-Excitation of a Single Fluorescent Molecule. Photonic Sensors, 2019, 10(4): 364-374 DOI:10.1007/s13320-020-0593-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miyake T, Tanii T, Sonobe H, Akahori R, Shimamoto N, Ueno T, . Real-time imaging of single-molecule fluorescence with a zero-mode waveguide for the analysis of protein-protein interaction. Analytical Chemistry, 2008, 80(15): 6018-6022.

[2]

Samiee K T, Foquet M, Guo L, Cox E C, Craighead H G. λ-repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides. Biophysical Journal, 2005, 88(3): 2145-2153.

[3]

Al Balushi A A, Gordon R. A label-free untethered approach to single-molecule protein binding kinetics. Nano Letters, 2014, 14(10): 5787-5791.

[4]

Ridgeway W K, Millar D P, Williamson J R. Quantitation of ten 30s ribosomal assembly intermediates using fluorescence triple correlation spectroscopy. Proceedings of the National Academy of Sciences, 2012, 109(34): 13614-13619.

[5]

Kim E, Baaske M D, Schuldes I, Wilsch P S, Vollmer F. Label-free optical detection of single enzyme-reactant reactions and associated conformational changes. Science Advances, 2017, 3(3): e1603044.

[6]

Picelli S, Faridani O R, Bjorklund A K, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using sart-seq2. Nature Protocols, 2014, 9(1): 171-181.

[7]

Gawad C, Koh W, Quake S R. Single-cell genome sequencing: current state of the science. Nature Reviews Genetics, 2016, 17(3): 175-188.

[8]

Walling M A, Novak J A, Shepard J R E. Quantum dots for live cell and in vivo imaging. International Journal of Molecular Sciences, 2009, 10(2): 441-491.

[9]

Diedenhofen S L, Kufer D, Lasanta T, Konstantatos G. Integrated colloidal quantum dot photodetectors with color-tunable plasmonic nanofocusing lenses. Light: Science and Applications, 2015, 4(1): e234.

[10]

Zampieri M, Sekar K, Zamboni N, Sauer U. Frontiers of high-throughput metabolomics. Current Opinion in Chemical Biology, 2017, 36, 15-23.

[11]

Dincer C, Bruch R, Kling A, Dittrich P S, Urban G A. Multiplexed point-of-care testing-xPOCT. Trends in Biotechnology, 2017, 35(8): 728-742.

[12]

Kozawa Y, Matsunaga D, Sato S. Superresolution imaging via superoscillation focusing of a radially polarized beam. Optica, 2018, 5(2): 86-92.

[13]

Hasegawa H. Laser scanning confocal microscopy. Kobunshi, 2006, 55(12): 961-965.

[14]

Fish K N. Total internal reflection fluorescence (TIRF) microscopy. Current Protocols in Cytometry, 2009, 50(1): 12.18.1-12.18.13.

[15]

Trache A, Meininger G A. Total internal reflection fluorescence (TIRF) microscopy: current protocols in microbiology, Chapter 2, 2008, Hoboken, NJ, USA: John Wiley & Sons, Inc.

[16]

Grandin H M, Städler B, Textor M, Vörös J. Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface. Biosensors and Bioelectronics, 2006, 21(8): 1476-1482.

[17]

Hassanzadeh A, Azami D. Waveguide evanescent field fluorescence microscopy: theoretical investigation of optical pressure on a cell. Journal of Nanophotonics, 2014, 8(1): 083076.

[18]

So P T, Dong C Y, Masters B R, Berland K M. Two-photon excitation fluorescence microscopy. Annual Review of Biomedical Engineering, 2000, 2(1): 399-429.

[19]

Blom H, Widengren J. Stimulated emission depletion microscopy. Chemical Reviews, 2017, 117(11): 7377-7427.

[20]

Dürig U, Pohl D W, Rohner F. Near-field optical-scanning microscopy. Journal of Applied Physics, 1986, 59(10): 3318-3327.

[21]

Lindquist N C, Jose J, Cherukulappurath S, Chen X, Johnson T W, Oh S H. Tip-based plasmonics: squeezing light with metallic nanoprobes. Laser and Photonics Reviews, 2013, 7(4): 453-477.

[22]

Hugall J T, Singh A, Van Hulst N F. Plasmonic cavity coupling. ACS Photonics, 2018, 5(1): 43-53.

[23]

Gopinath A, Miyazono E, Faraon A, Rothemund P W K. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature, 2016, 535(7612): 401-405.

[24]

Moran-Mirabal J M, Craighead H G. Zero-mode waveguides: sub-wavelength nanostructures for single molecule studies at high concentrations. Methods, 2008, 46(1): 11-17.

[25]

Plénat T, Yoshizawa S, Fourmy D. DNA-guided delivery of single molecules into zero-mode waveguides. ACS Applied Materials and Interfaces, 2017, 9(36): 30561-30566.

[26]

Auger T, Mathé J, Viasnoff V, Charron G, Di Meglio J M, Auvray L, . Zero-mode waveguide detection of flow-driven DNA translocation through nanopores. Physical Review Letters, 2014, 113(2): 028302.

[27]

Levene M J, Korlach J, Turner S W, Foquet M, Craighead H G, Webb W W. Zero-mode waveguides for single-molecule analysis at high concentrations. Science, 2003, 299(5607): 682-686.

[28]

Richards C I, Luong K, Srinivasan R, Turner S W, Dougherty D A, Korlach J, . Live-cell imaging of single receptor composition using zero-mode waveguide nanostructures. Nano Letters, 2012, 12(7): 3690-3694.

[29]

Y. Morita, K. Fujimoto, R. Iino, M. Tomishige, H. Shintaku, H. Kotera, et al., “Single-molecule fluorescence imaging of kinesin using linear zero-mode waveguides,” in 2016 IEEE Sensors, USA, Oct. 30–Nov. 3, 2016, pp: 1–3.

[30]

Larkin J, Henley R Y, Jadhav V, Korlach J, Wanunu M. Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. Nature Nanotechnology, 2017, 12(12): 1169-1175.

[31]

Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, . Real-time DNA sequencing from single polymerase molecules. Science, 2009, 323(5910): 133-138.

[32]

Han D, Crouch G M, Fu K, Zaino L P, Bohn P W. Single-molecule spectroelectrochemical cross-correlation during redox cycling in recessed dual ring electrode zero-mode waveguides. Chemical Science, 2017, 8(8): 5345-5355.

[33]

Crouch G M, Han D, Bohn P W. Zero-mode waveguide nanophotonic structures for single molecule characterization. Journal of Physics D: Applied Physics, 2018, 51(19): 193001.

[34]

Zaino L P, Grismer D A, Han D, Crouch G M, Bohn P W. Single occupancy spectroelectrochemistry of freely diffusing flavin mononucleotide in zero-dimensional nanophotonic structures. Faraday Discussions, 2015, 184(1): 101-115.

[35]

Gordon R, Brolo A G. Increased cut-off wavelength for a subwavelength hole in a real metal. Optics Express, 2005, 13(6): 1933-1938.

[36]

Choo H, Kim M K, Staffaroni M, Seok T J, Bokor J, Cabrini S, . Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper. Nature Photonics, 2012, 6(12): 838-844.

[37]

Gordon R, Brolo A G, Sinton D, Kavanagh K L. Resonant optical transmission through hole-arrays in metal films: physics and applications. Laser and Photonics Reviews, 2010, 4(2): 311-335.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/