Two-Dimensional Tunable and Temperature-Insensitive Lyot Filter for FM-to-AM Compensation

Mengqiu Fan , Xiaocheng Tian , Dandan Zhou , Jiatian Wei , Handing Xia , Hongwei Lv , Hao Zhao , Dangpeng Xu , Wanguo Zheng

Photonic Sensors ›› 2020, Vol. 11 ›› Issue (3) : 325 -333.

PDF
Photonic Sensors ›› 2020, Vol. 11 ›› Issue (3) : 325 -333. DOI: 10.1007/s13320-020-0591-4
Regular

Two-Dimensional Tunable and Temperature-Insensitive Lyot Filter for FM-to-AM Compensation

Author information +
History +
PDF

Abstract

Utilizing polarization maintaining photonic crystal fiber (PM-PCF) with the low temperature coefficient of birefringence, a two-dimensional tunable and temperature-insensitive Lyot filter aiming to compensate the frequency modulation to amplitude modulation (FM-to-AM) conversion in high power laser facility is demonstrated. The Jones matrix is applied to analyze the relationship between optical characteristics of the filter and physical parameters (including amplitude ratio, phase delay, and susceptibility of the birefringence to temperature) of the polarization optical field. Both the transmission peak wavelength and extinction ratio of the spectral transmission are able to be changed simultaneously, hence, it shows more efficient FM-to-AM compensation ability. Besides, the transmission peak shift is about 18pm/°C with the PM-PCF configuration, which is about two orders of magnitude less than the normal polarization maintaining fiber (PMF) configuration. The demonstrated filter presents a practical application potential in large scale laser driven facility.

Keywords

Laser fusion / optical fiber devices / frequency modulation / birefringence / optical filters

Cite this article

Download citation ▾
Mengqiu Fan, Xiaocheng Tian, Dandan Zhou, Jiatian Wei, Handing Xia, Hongwei Lv, Hao Zhao, Dangpeng Xu, Wanguo Zheng. Two-Dimensional Tunable and Temperature-Insensitive Lyot Filter for FM-to-AM Compensation. Photonic Sensors, 2020, 11(3): 325-333 DOI:10.1007/s13320-020-0591-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Rothenberg, D. Browning, and R. Wilcox, “Issue of FM to AM conversion on the national ignition facility,” in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, Monterey, CA, United States, 1999, pp. 51–61.

[2]

Lindl J D, Amendt P, Berger R L. The physics basis for ignition using indirect-drive targets on the national ignition facility. Physics of Plasmas, 2004, 11(2): 339-491.

[3]

Hocquet S, Penninckx D, Bordenave E, Gouédard C, Jaouën Y. FM-to-AM conversion in high-power lasers. Applied Optics, 2008, 47(18): 3338-3349.

[4]

Zheng W G, Wei X F, Zhu Q H, Jing F, Hu D X, Yuan X D, . Laser performance upgrade for precise ICF experiment in SO-III laser facility. Matter and Radiation at Extremes, 2017, 2(5): 243-255.

[5]

C. Dorrer, A. V Okishev, R. O. Roides, R. Cuffney, W. Bittle, and J. D. Zuegel, “Fiber front end for an OMEOA EP demonstration of beam-smoothing techniques for NIF polar-drive ignition,” in Conference on Lasers and Electro-Optics 2012, San Jose, California, USA, May, 2012, pp. CTu3M.2.

[6]

J. F. Oleyze, J. Hares, S. Vidal, N. Beck, J. Dubertrand, and A. Perrin, “Recent advances in the front-end sources of the LMJ fusion laser,” in High Power Lasers for Fusion Research, San Francisco, California, USA, February, 2011, pp. 79160I.

[7]

Xu D P, Tian X C, Zhou D D, Zong Z Y, Fan M Q, Zhang R, . Temporal pulse precisely sculpted millijoule-level fiber laser injection system for high-power laser driver. Applied Optics, 2017, 56(10): 2661-2666.

[8]

Li R, Fan W, Jiang Y E, Qiao Z, Zhang P, Lin Z Q. Tunable compensation of OVD-induced FM-AM conversion in the front end of high-power lasers. Applied Optics, 2017, 56(4): 993-998.

[9]

Qiao Z, Wang X C, Fan W, Li X C, Jiang Y E, Li R, . Suppression of FM-to-AM modulation by polarizing fiber front end for high-power lasers. Applied Optics, 2016, 55(29): 8352-8358.

[10]

Xu D P, Wang J J, Li M Z, Lin H, Zhang R, Deng Y, . Weak et alon effect in wave plates can introduce significant FM-to-AM modulations in complex laser systems. Optics Express, 2010, 18(7): 6621-6627.

[11]

Z. Y. Chen, Y. E. Jiang, J. F. Wang, W. Fan, and X. C. Li, “Compensation system for FM-to-AM effects in high-power laser system,” in Applied Optics and Photonics China, AOPC 2015, Beijing, China, 2015, pp. 9671.

[12]

Xu D P, Huang Z H, Wang J J, Li M Z, Lin H H, Zhang R, . A fiber-based polarization-rotation filter utilized to suppress the FM-to-AM effect in a large-scale laser facility. Journal of Optics, 2013, 15(8): 085702.

[13]

Vidal S, Luce J, Penninckx D. Experimental demonstration of linear precompensation of a nonlinear transfer function due to second-harmonic generation. Optics Letters, 2011, 36(1): 88-90.

[14]

Wang M X, Fu S N, Shum P, Ngo N Q, Wu J, Lin J T. A tunable Lyot birefringent filter with variable channel spacing and wavelength using nonlinear polarization rotation in an SOA. IEEE Photonics Technology Letters, 2008, 20(18): 1527-1529.

[15]

Penninckx D, Beck N, Oleyze J F, Videau L. Signal propagation over polarization-maintaining fibers: problem and solutions. Journal of Lightwave Technology, 2006, 24(11): 4197-4207.

[16]

Liu S, Yan F P, Ting F, Zhang L N, Bai Z Y, Han W O, . Multi-wavelength thulium-doped fiber laser using a fiber-based Lyot filter. IEEE Photonics Technology Letters, 2016, 28(8): 864-867.

[17]

Simpson J R, Stolen R H, Sears F M, Pleibel W, Macchesney J B, Howard R E. A single-polarization fiber. Journal of Lightwave Technology, 1983, 1(2): 370-374.

[18]

Nolan D A, Berkey O E, Li M J, Chen X, Wood W A, Zenteno L A. Single-polarization fiber with a high extinction ratio. Optics Letters, 2004, 29(16): 1855-1857.

[19]

Sunnerud H, Xie C J, Karlsson M, Samuelsson R, Andrekson P A. A comparison between different PMD compensation techniques. Journal of Lightwave Technology, 2002, 20(3): 368.

[20]

Goldstein D H. Polarized light, 2011, Florida: CRC Press

[21]

Martynkien T, Szpulak M, Urbanczyk W. Modeling and measurement of temperature sensitivity in birefringent photonic crystal holey fibers. Applied Optics, 2005, 44(36): 7780-7788.

[22]

Lu L, Yang Y H, Li H Y. Study of polarization-maintaining photonic crystal fibers with zero birefringent temperature sensitive coefficient. Acta Optica Sinica, 2015, 35(10): 1006006.

[23]

Zhao C L, Yang X F, Lu C, Jin W, Demokan M S. Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror. IEEE Photonics Technology Letters, 2004, 16(11): 2535-2537.

[24]

Fu O W, Li Y P, Fu X H, Jin W, Bi W H. Temperature insensitive curvature sensor based on cascading photonic crystal fiber. Optical Fiber Technology, 2018, 41, 64-68.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/