Design of a Plasmonic Platform to Improve the SERS Sensitivity for Molecular Detection

Chahinez Dab , Reji Thomas , Andreas Ruediger

Photonic Sensors ›› 2019, Vol. 10 ›› Issue (3) : 204 -214.

PDF
Photonic Sensors ›› 2019, Vol. 10 ›› Issue (3) : 204 -214. DOI: 10.1007/s13320-019-0576-3
Regular

Design of a Plasmonic Platform to Improve the SERS Sensitivity for Molecular Detection

Author information +
History +
PDF

Abstract

We suggested a plasmonic platform based on a cubic pattern of gold spheres for surface enhanced Raman spectroscopy (SERS). In the case of linear polarization along the symmetry axes, the SERS enhancement per area is identical to hexagonally patterned surfaces. The validity of this model was tested using the simulation package of COMSOL Multiphysics® Modeling Software. We found an improved sensitivity in the near infrared and visible region of the electromagnetic spectrum. This method considered tolerance towards stacking faults and suggested a plasmonic platform for ultra-sensing applications. The design can be extended towards the molecular detection if the proposed plasmonic platform is used with SERS.

Keywords

Plasmonic platform / SERS enhancement / sensitivity / finite element method

Cite this article

Download citation ▾
Chahinez Dab, Reji Thomas, Andreas Ruediger. Design of a Plasmonic Platform to Improve the SERS Sensitivity for Molecular Detection. Photonic Sensors, 2019, 10(3): 204-214 DOI:10.1007/s13320-019-0576-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Demirel G, Usta H, Yilmaz M, Celik M, Ardıç Alidağı H, Buyukserin F. Surface-enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic semiconductors as SERS platforms. Journal of Materials Chemistry C, 2018, 6(20): 5314-5335.

[2]

Maltzahn G V, Centrone A, Park J H, Ramanathan R, Sailor M J, Alan Hatton T, . SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Advanced Materials, 2009, 21(31): 3175-3180.

[3]

Koppens F H L, Chang D E, García De Abajo F J. Graphene plasmonics: a platform for strong light-matter interactions. Nano Letters, 2011, 11(8): 3370-3377.

[4]

Chahinez D, Reji T, Andreas R. Modeling of the surface plasmon resonance tunability of silver/gold core-shell nanostructures. RSC Advances, 2018, 8(35): 19616-19626.

[5]

Wei T, Liu Y, Dong W, Zhang Y, Huang C, Sun Y, . Surface-dependent localized surface plasmon resonances in CuS nanodisks. ACS Applied Materials & Interfaces, 2013, 5(21): 10473-10477.

[6]

Sherry L J, Chang S H, Schatz G C, Van Duyne R P, Wiley B J, Xia Y. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Letters, 2005, 5(10): 2034-2038.

[7]

Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, . Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 1997, 78(9): 1667-1670.

[8]

Kneipp K, Kneipp H, Kartha V, Manoharan R, Deinum G, Itzkan I, . Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Physical Review E, 1998, 57(6): 6281-6284.

[9]

Michaels A M, Jiang J, Brus L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. The Journal of Physical Chemistry B, 2000, 104(50): 11965-11971.

[10]

Strobbia P, Languirand E, Cullum B M. Recent advances in plasmonic nanostructures for sensing: a review. Optical Engineering, 2015, 54(10): 100902.

[11]

Mayer K M, Hafner J H. Localized surface plasmon resonance sensors. Chemical Reviews, 2011, 111(6): 3828-3857.

[12]

Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311(5758): 189-193.

[13]

Jain P K, Huang X H, El-Sayed I H, El-Sayed M A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts of Chemical Research, 2008, 41(12): 1578-1586.

[14]

Ray P C. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chemical Reviews, 2010, 110(9): 5332-5365.

[15]

Tabatabaei M, Sangar A, Kazemi-Zanjani N, Torchio P, Merlen A, Lagugné-Labarthet F. Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography. The Journal of Physical Chemistry C, 2013, 117(28): 14778-14786.

[16]

Yuan H, Fales A M, Khoury C G, Liu J, Vo-Dinh T. Spectral characterization and intracellular detection of surface-enhanced Raman scattering (SERS)-encoded plasmonic gold nanostars. Journal of Raman Spectroscopy, 2013, 44(2): 234-239.

[17]

Kumar J, Thomas R, Swathi R S, Thomas K G. Au nanorod quartets and Raman signal enhancement: towards the design of plasmonic platforms. Nanoscale, 2014, 6(18): 10454-10459.

[18]

Garreau A, Tabatabaei M, Hou R, Wallace G Q, Norton P R, Lagugné-Labarthet F. Probing the plasmonic properties of heterometallic nanoprisms with near-field fluorescence microscopy. The Journal of Physical Chemistry C, 2016, 120(36): 20267-20276.

[19]

Wallace G Q, Tabatabaei M, Hou R, Coady M J, Norton P R, Simpson T S, . Superimposed arrays of nanoprisms for multispectral molecular plasmonics. ACS Photonics, 2016, 3(9): 1723-1732.

[20]

Dab C, Awada C, Merlen A, Ruediger A. Near-field chemical mapping of gold nanostructures using a functionalized scanning probe. Physical Chemistry Chemical Physics, 2017, 19(46): 31063-31071.

[21]

Zhang W, Li Q, Qiu M. A plasmon ruler based on nanoscale photothermal effect. Optics Express, 2013, 21(1): 172-181.

[22]

Lassiter J B, Aizpurua J, Hernandez L I, Brandl D W, Romero I, Lal S. Close encounters between two nanoshells. Nano Letters, 2008, 8(4): 1212-1218.

[23]

Esteban R, Borisov A G, Nordlander P, Aizpurua J. Bridging quantum and classical plasmonics with a quantum-corrected model. Nature Communications, 2012, 3, 825-829.

[24]

Yan Q, Chen A, Chua S J, Zhao X S. Nanosphere lithography from template-directed colloidal sphere assemblies. Journal of Nanoscience and Nanotechnology, 2006, 6(6): 1815-1818.

[25]

Chan G H, Zhao J, Hicks E M, Schatz G C, Van Duyne R P. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Letters, 2007, 7(7): 1947-1952.

[26]

Haynes C L, Van Duyne R P. Dichroic optical properties of extended nanostructures fabricated using angle-resolved nanosphere lithography. Nano Letters, 2003, 3(7): 939-943.

[27]

Kolhatkar G, Merlen A, Zhang J, Dab C, Wallace G Q, Lagugné-Labarthet F, . Optical near-field mapping of plasmonic nanostructures prepared by nanosphere lithography. Beilstein Journal of Nanotechnology, 2018, 9(1): 1536-1543.

[28]

Van Hulst N F. Nanophotonics: plasmon quantum limit exposed. Nature Nanotechnology, 2012, 7(12): 775-7.

[29]

Ghosh S K, Nath S, Kundu S, Esumi K, Pal T. Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. The Journal of Physical Chemistry B, 2004, 108(37): 13963-13971.

[30]

Morarescu R, Shen H, Vallée R A L, Maes B, Kolaric B, Damman P. Exploiting the localized surface plasmon modes in gold triangular nanoparticles for sensing applications. Journal of Materials Chemistry, 2012, 22(23): 11537-11542.

[31]

Dab C, Thomas R, Ruediger A. Modeling of the surface plasmon resonance tunability of silver/gold core-shell nanostructures. RSC Advances, 2018, 8(35): 19616-19626.

[32]

Kolhatkar G, Plathier J, Ruediger A. Nanoscale investigation of materials, chemical reactions, and biological systems by tip enhanced Raman spectroscopy–a review. Journal of Materials Chemistry C, 2018, 6(6): 1307-1319.

[33]

Karimi E, Schulz S A, De Leon I, Qassim H, Upham J, Boyd R W. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light: Science & Applications, 2014, 3(5): 1-4.

[34]

Tittl A, Mai P, Taubert R, Dregely D, Liu N, Giessen H. Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano Letters, 2011, 11(10): 4366-4369.

[35]

Chen X, Huang L, Mühlenbernd H, Li G, Bai B, Tan Q, . Dual-polarity plasmonic metalens for visible light. Nature Communications, 2012, 3, 1-6.

[36]

Liao H, Nehl C L, Hafner J H. Biomedical applications of plasmon resonant metal nanoparticles. Nanomedecine, 2006, 1(2): 201-208.

[37]

Smith A M, Mancini M C, Nie S. Bioimaging: second window for in vivo imaging. Nature Nanotechnology, 2009, 4(11): 710-711.

[38]

Qin L, Zou S, Xue C, Atkinson A, Schatz G C, Mirkin C A. Designing, fabricating, and imaging Raman hot spots. Proceedings of the National Academy of Sciences, 2006, 103(36): 13300-13303.

[39]

Camden J P, Dieringer J A, Zhao J, Van Duyne R P, Duyne R P V A N. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Accounts of Chemical Research, 2008, 41(12): 1653-1661.

[40]

Chen Y, Munechika K, Ginger D S. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Letters, 2007, 7(3): 690-696.

[41]

Ou F S, Hu M, Naumov I, Kim A, Wu W, Bratkovsky A M, . Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced Raman spectroscopy. Nano Letters, 2011, 11(6): 2538-2542.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/