Right-Angle Shaped Elements as Dual-Band Metamaterial Absorber in Terahertz

Salman Daniel , Prince Bawuah

Photonic Sensors ›› 2019, Vol. 10 ›› Issue (3) : 233 -241.

PDF
Photonic Sensors ›› 2019, Vol. 10 ›› Issue (3) : 233 -241. DOI: 10.1007/s13320-019-0573-6
Regular

Right-Angle Shaped Elements as Dual-Band Metamaterial Absorber in Terahertz

Author information +
History +
PDF

Abstract

Metamaterial absorbers display potential applications in the field of photonics and have been investigated extensively during the last decade. We propose a dual-band resonant metamaterial absorber with right-angle shaped elements (RAEs) in the terahertz range based on numerical simulations. The absorber remains insensitive to a wide range of incidence angles (0°–70°) by showing a minimum absorbance of ~80% at 70°. Furthermore, the proposed absorber is highly independent on any state of polarization of the incidence electromagnetic wave due to the high absorbance, i.e., greater than 80%, recorded for the considered polarization states. To further comprehend the slight variations in absorbance as a function of change in the angle of incidence, the impedance of the structure has been critically examined. The metamaterial absorber is simple in design, and we provide a possible path of fabrication.

Keywords

Metamaterial / absorbance / photonics devices / terahertz

Cite this article

Download citation ▾
Salman Daniel, Prince Bawuah. Right-Angle Shaped Elements as Dual-Band Metamaterial Absorber in Terahertz. Photonic Sensors, 2019, 10(3): 233-241 DOI:10.1007/s13320-019-0573-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shamonina E, Solymar L. Metamaterials: how the subject started. Metamaterials, 2007, 1(1): 12-18.

[2]

Smith D R. Metamaterials and negative refractive index. Science, 2004, 305(5685): 788-792.

[3]

Kim J, Han K, Hahn J W. Selective dual-band metamaterial perfect absorber for infrared stealth technology. Scientific Reports, 2017, 7(1): 6740.

[4]

Shalaev V M. Optical negative-index metamaterials. Nature Photonics, 2007, 1(1): 41-48.

[5]

Fox A M. Optical properties of solids, 2001, Oxford: Oxford University Press

[6]

Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966-3969.

[7]

Physical Review B, 2011, 84(7

[8]

Cao T, Wei C, Simpson R E, Zhang L, Cryan M J. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Scientific Reports, 2014, 4, 3955.

[9]

Cheng Y, Yang H, Cheng Z, Wu N. Perfect metamaterial absorber based on a split-ring-cross resonator. Applied Physics A, 2011, 102(1): 99-103.

[10]

Physical Review Letters, 2008, 100(20

[11]

Physical Review B, 2008, 78(24

[12]

Aydin K, Ferry V E, Briggs R M, Atwater H A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2011

[13]

AIP Advances, 2015, 5(6

[14]

Scientific Reports, 2016, 6(1

[15]

Ye Y Q, Jin Y, He S. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. Journal of the Optical Society of America B, 2010, 27(3): 498.

[16]

Applied Physics Letters, 2015, 106(3

[17]

Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Optics Express, 2008, 16(10): 7181.

[18]

Nguyen T T, Lim S. Wide incidence angle-insensitive metamaterial absorber for both TE and TM polarization using eight-circular-sector. Scientific Reports, 2017, 7(1): 3204.

[19]

Wu T, Lai J, Wang S, Li X, Huang Y. UV-visible broadband wide-angle polarization-insensitive absorber based on metal groove structures with multiple depths. Applied Optics, 2017, 56(21): 5844.

[20]

Applied Optics, 2016, 55(29

[21]

AIP Advances, 2016, 6(7

[22]

He X J, Wang Y, Wang J, Gui T, Wu Q. Dual-band terahertz metamaterial absorber with polarization insensitivity and wide inciden angle. Progress in Electromagnetics Research, 2011, 115, 381-397.

[23]

Optics Letters, 2011, 36(6

[24]

Applied Physics Letters, 2009, 95(24

[25]

Huang X, Lu C, Rong C, Liu M. Wide-angle perfect metamaterial absorbers based on cave-rings and the complementary patterns. Optical Materials Express, 2018, 8(9): 2520.

[26]

Huang X, Lu C, Rong C, Hu Z, Liu M. Multiband ultrathin polarization-insensitive terahertz perfect absorbers with complementary metamaterial and resonator based on high-order electric and magnetic resonances. IEEE Photonics Journal, 2018, 10(6): 1-11.

[27]

Cao T, Wang S, Wei C W. Simulation of tunable metamaterial perfect absorber by modulating Bi2Se3 dielectric function. Materials Express, 2016, 6(1): 45-52.

[28]

Dong W, Qiu Y, Yang J, Simpson R E, Cao T. Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings. The Journal of Physical Chemistry C, 2016, 120(23): 12713-12722.

[29]

Cao T, Zhang L, Simpson R E, Cryan M J. Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial. Journal of the Optical Society of America B, 2013, 30(6): 1580.

[30]

Cao T, Simpson R E, Cryan M J. Study of tunable negative index metamaterials based on phase-change materials. Journal of the Optical Society of America B, 2013, 30(2): 439.

[31]

Cao T, Wei C, Simpson R E, Zhang L, Cryan M J. Rapid phase transition of a phase-change metamaterial perfect absorber. Optical Materials Express, 2013, 3(8): 1101.

[32]

Williams G P. Filling the THz gap-high power sources and applications. Reports on Progress in Physics, 2005, 69(2): 301-326.

[33]

Holloway C L, Kuester E F, Gordon J A, O’Hara J, Booth J, Smith D R. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10-35.

[34]

Yoo Y J, Hwang J S, Lee Y P. Flexible perfect metamaterial absorbers for electromagnetic wave. Journal of Electromagnetic Waves and Applications, 2017, 31(7): 663-715.

[35]

Gong C, Zhan M, Yang J, Wang Z, Liu H, Zhao Y, . Broadband terahertz metamaterial absorber based on sectional asymmetric structures. Scientific Reports, 2016, 6(1): 32466.

[36]

Liu X, Lan C, Li B, Zhao Q, Zhou J. Dual band metamaterial perfect absorber based on artificial dielectric ‘molecules’. Scientific Reports, 2016, 6(1): 28906.

[37]

Applied Physics Letters, 2016, 109(6

[38]

Zhang B, Zhao Y, Hao Q, Kiraly B, Khoo I, Chen S, . Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Optics Express, 2011, 19(16): 15221.

[39]

Lee H M, Lee H. A dual-band metamaterial absorber based with resonant-magnetic structures. Progress in Electromagnetics Research, 2012, 33, 1-12.

[40]

Ma Y, Zhang H, Li Y, Wang Y. Miniaturized and dual-band metamaterial absorber with fractal Sierpinski structure. Journal of the Optical Society of America B, 2014, 31(2): 325.

[41]

Rajab K Z, Naftaly M, Linfield E H, Nino J C, Arenas D, Tanner D, . Broadband dielectric characterization of aluminum oxide (Al2O3). Journal of Microelectronics and Electronic Packaging, 2008, 5(1): 2-7.

[42]

Matsumoto N, Hosokura T, Kageyama K, Takagi H, Sakabe Y, Hangyo M. Analysis of dielectric response of TiO2 in terahertz frequency region by general harmonic oscillator model. Japanese Journal of Applied Physics, 2008, 47(9): 7725-7728.

[43]

Applied Optics, 1998, 37(22

[44]

DeVore J R. Refractive indices of rutile and sphalerite. Journal of the Optical Society of America, 1951, 41(6): 416.

[45]

Pozar D M. Microwave engineering, 2011 4th Ed USA: Wiley

[46]

Daniel S, Bawuah P. Highly polarization and wide-angle insensitive metamaterial absorber for terahertz applications. Optical Materials, 2018 447-452.

[47]

Optics Express, 2015, 23(7

[48]

Parrott E P J, Zeitler J A, Frišcic T, Pepper M, Jones W, Day G M, . Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals. Crystal Growth and Design, 2009, 9(3): 1452-1460.

[49]

Negishi N, Matsuzawa S, Takeuchi K, Pichat P. Transparent micrometer-thick TiO2 films on SiO2-coated glass prepared by repeated dip-coating/calcination: characteristics and photocatalytic activities for removing acetaldehyde or toluene in air. Chemistry of Materials, 2007, 19(15): 3808-3814.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/