Anodic Alumina Photonic Crystals as Refractive Index Sensors for Controlling the Composition of Liquid Mixtures

Matin Ashurov , Vladimir Gorelik , Kirill Napolskii , Sergey Klimonsky

Photonic Sensors ›› 2019, Vol. 10 ›› Issue (2) : 147 -154.

PDF
Photonic Sensors ›› 2019, Vol. 10 ›› Issue (2) : 147 -154. DOI: 10.1007/s13320-019-0569-2
Regular

Anodic Alumina Photonic Crystals as Refractive Index Sensors for Controlling the Composition of Liquid Mixtures

Author information +
History +
PDF

Abstract

Photonic crystals based on anodic aluminum oxide films are examined as refractive index sensors for controlling the composition of water-alcohol liquid mixtures. The position of the reflectance maximum corresponding to the first photonic stop band is used as the analytical signal. Impregnation of a photonic crystal with water-ethanol and water-glycerol mixtures results in a redshift of the reflectance maximum. A fairly high refractive index sensitivity, sufficient to determine the composition of water-ethanol and water-glycerol mixtures with an accuracy of about 1 wt.%, is observed. The detailed dependencies of the analytical signal on the composition of mixtures are experimentally investigated and compared with numerical calculations. Prospects and limitations of the refractive index sensors based on anodic alumina photonic crystals are discussed.

Keywords

Photonic crystal / anodic alumina / sensor / refractive index

Cite this article

Download citation ▾
Matin Ashurov, Vladimir Gorelik, Kirill Napolskii, Sergey Klimonsky. Anodic Alumina Photonic Crystals as Refractive Index Sensors for Controlling the Composition of Liquid Mixtures. Photonic Sensors, 2019, 10(2): 147-154 DOI:10.1007/s13320-019-0569-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Galisteo-Lopez J F, Ibisate M, Sapienza R, Froufe-Perez L S, Blanco A, Lopez C. Self-assembled photonic structures. Advanced Materials, 2011, 23(1): 30-69.

[2]

Zhao Y, Xie Z, Gu H, Zhu C, Gu Z. Bio-inspired variable structural color materials. Chemical Society Reviews, 2012, 41(8): 3297-3317.

[3]

Wang H, Zhang K Q. Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors, 2013, 13(4): 4192-4213.

[4]

Kuo C Y, Lu S Y, Chen S F, Bernards M, Jiang S Y. Stop band shift based chemical sensing with three-dimensional opal and inverse opal structures. Sensors and Actuators B: Chemical, 2007, 124(2): 452-458.

[5]

Li J L, Zheng T S. A comparison of chemical sensors based on the different ordered inverse opal films. Sensors and Actuators B: Chemical, 2008, 131(1): 190-195.

[6]

Kuo W K, Weng H P, Hsu J J, Yu H H. Photonic crystal-based sensors for detecting alcohol concentration. Applied Sciences, 2016, 6(3): 67.

[7]

Amrehn S, Wu X, Schumacher C, Wagner T. Photonic crystal-based fluid sensors: toward practical application. Physica Status Solidi (A), 2015, 212(6): 1266-1272.

[8]

Nejadebrahimy M, Halimi L, Alipour-Banaei H. Design and simulation of ultrasensitive nano-biosensor based on OFPC. Photonic Sensors, 2015, 5(1): 43-49.

[9]

Sahu S, Ali J, Yupapin P P, Singh G. Porous silicon based Bragg-grating resonator for refractive index biosensor. Photonic Sensors, 2018, 8(3): 248-254.

[10]

Arunkumar R, Suaganya T, Robinson S. Design and analysis of 2D photonic crystal based biosensor to detect different blood components. Photonic Sensors, 2019, 9(1): 69-77.

[11]

Wang Y, Cheng W, Qin J, Han Z. Terahertz refractive index sensor based on the guided resonance in a photonic crystal slab. Optics Communications, 2019, 434, 163-166.

[12]

Holtz J H, Asher S A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature, 1997, 389(6653): 829-832.

[13]

Zhao Y J, Zhao X W, Tang B C, Xu W Y, Li J, Hu L, . Quantum-dot-tagged bioresponsive hydrogel suspension array for multiplex label-free DNA detection. Advanced Functional Materials, 2010, 20(6): 976-982.

[14]

Cai Z, Smith N L, Zhang J T, Asher S A. Two-dimensional photonic crystal chemical and biomolecular sensors. Analytical Chemistry, 2015, 87(10): 5013-5025.

[15]

Cai Z, Sasmal A, Liu X, Asher S A. Responsive photonic crystal carbohydrate hydrogel sensor materials for selective and sensitive lectin protein detection. ACS Sensors, 2017, 2(10): 1474-1481.

[16]

Wang F, Zhu Z, Xue M, Xue F, Wang Q, Meng Z, . Cellulose photonic crystal film sensor for alcohols. Sensors and Actuators B: Chemical, 2015, 220, 222-226.

[17]

Kou D, Zhang S, Lutkenhaus J L, Wang L, Tang B, Ma W. Porous organic/inorganic hybrid one-dimensional photonic crystals for rapid visual detection of organic solvents. Journal of Materials Chemistry C, 2018, 6(11): 2704-2711.

[18]

Law C S, Lim S Y, Abell A D, Voelcker N H, Santos A. Nanoporous anodic alumina photonic crystals for optical chemo-and biosensing: fundamentals, advances, and perspectives. Nanomaterials, 2018, 8(10): 788.

[19]

Chen Y, Santos A, Wang Y, Kumeria T, Ho D, Li J, . Rational design of photonic dust from nanoporous anodic alumina films: a versatile photonic nanotool for visual sensing. Scientific Reports, 2015, 5, 12893.

[20]

Santos A, Yoo J H, Rohatgi C V, Kumeria T, Wang Y, Losic D. Realisation and advanced engineering of true optical rugate filters based on nanoporous anodic alumina by sinusoidal pulse anodisation. Nanoscale, 2016, 8(3): 1360-1373.

[21]

Law C S, Lim S Y, Abell A D, Santos A. Real-time binding monitoring between human blood proteins and heavy metal ions in nanoporous anodic alumina photonic crystals. Analytical Chemistry, 2018, 90(16): 10039-10048.

[22]

Nemati M, Santos A, Losic D. Fabrication and optimization of bilayered nanoporous anodic alumina structures as multi-point interferometric sensing platform. Sensors, 2018, 18(2): 470.

[23]

Chen Y, Santos A, Wang Y, Kumeria T, Wang C, Li J, . Interferometric nanoporous anodic alumina photonic coatings for optical sensing. Nanoscale, 2015, 7(17): 7770-7779.

[24]

Chen Y, Santos A, Wang Y, Kumeria T, Li J, Wang C, . Biomimetic nanoporous anodic alumina distributed bragg reflectors in the form of films and microsized particles for sensing applications. ACS Applied Materials & Interfaces, 2015, 7(35): 19816-19824.

[25]

Guo D L, Fan L X, Wang F H, Huang S Y, Zou X W. Porous anodic aluminum oxide Bragg stacks as chemical sensors. The Journal of Physical Chemistry C, 2008, 112(46): 17952-17956.

[26]

Yan P, Fei G T, Shang G L, Wu B, Zhang L D. Fabrication of one-dimensional alumina photonic crystals with a narrow band gap and their application to high-sensitivity sensors. Journal of Materials Chemistry C, 2013, 1(8): 1659-1664.

[27]

Lee J, Bae K, Kang G, Choi M, Baek S, Yoo D, . Graded-lattice AAO photonic crystal heterostructure for high Q refractive index sensing. RSC Advances, 2015, 5(88): 71770-71777.

[28]

Kumeria T, Rahman M M, Santos A, Ferre-Borrull J, Marsal L F, Losik D. Structural and optical nanoengineering of nanoporous anodic alumina rugate filters for real-time and label-free biosensing applications. Analytical Chemistry, 2014, 86(3): 1837-1844.

[29]

Law C S, Lim S Y, Santos A. On the precise tuning of optical filtering features in nanoporous anodic alumina distributed Bragg reflectors. Scientific Reports, 2018, 8(1): 4642.

[30]

Vasnetsov M V, Orlova T N, Bazhenov V Y, Shevchuk A S, Kudryavtseva A D, Tcherniega N V. Photonic bandgap examination in an immersed synthetic opal. Applied Physics B, 2014, 116(3): 541-548.

[31]

Yisen L, Yi C, Zhiyuan L, Xing H, Yi L. Structural coloring of aluminum. Electrochemistry Communications, 2011, 13(12): 1336-1339.

[32]

Kushnir S E, Napolskii K S. Thickness-dependent iridescence of one-dimensional photonic crystals based on anodic alumina. Materials & Design, 2018, 144, 140-150.

[33]

Gorelik V S, Klimonsky S O, Filatov V V, Napolskii K S. Optical properties of one-dimensional photonic crystals based on porous films of anodic aluminum oxide. Optics and Spectroscopy, 2016, 120(4): 534-539.

[34]

Lide DR. CRC handbook of chemistry and physics: Section 8: Analytical Chemistry, 2004 84th ed. Boca Raton, Florida, USA: CRC Press, 62-65.

[35]

Yanagishita T, Masuda H. Facile preparation of porous alumina through-hole masks for sputtering by two-layer anodization. AIP Advances, 2016, 6(8): 085108.

[36]

Mattia D, Leese H. Controlled hydrothermal pore reduction in anodic alumina membranes. Nanoscale, 2014, 6(22): 13952-13957.

[37]

Petukhov D I, Buldakov D A, Tishkin A A, Lukashin A V, Eliseev A A. Liquid permeation and chemical stability of anodic alumina membranes. Beilstein Journal of Nanotechnology, 2017, 8(1): 561-570.

[38]

Leontiev A P, Brylev O A, Napolskii K S. Arrays of rhodium nanowires based on anodic alumina: preparation and electrocatalytic activity for nitrate reduction. Electrochimica Acta, 2015, 155, 466-473.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/