A Numerical Approach to Design the Kretschmann Configuration Based Refractive Index Graphene-MoS2 Hybrid Layers With TiO2-SiO2 Nano for Formalin Detection

Md. Biplob Hossain , Tamanna Tasnim , Lway F. Abdulrazak , Md. Masud Rana , Md. Rabiul Islam

Photonic Sensors ›› 2019, Vol. 10 ›› Issue (2) : 134 -146.

PDF
Photonic Sensors ›› 2019, Vol. 10 ›› Issue (2) : 134 -146. DOI: 10.1007/s13320-019-0566-5
Regular

A Numerical Approach to Design the Kretschmann Configuration Based Refractive Index Graphene-MoS2 Hybrid Layers With TiO2-SiO2 Nano for Formalin Detection

Author information +
History +
PDF

Abstract

In this paper, a Kretschmann configuration based surface plasmon resonance (SPR) sensor is numerically designed using graphene-MoS2 hybrid structure TiO2-SiO2 nano particles for formalin detection. In this design, the observations of SPR angle versus minimum reflectance and SPR frequency (F SPR) versus maximum transmittance (T max) are considered. The chitosan is used as probe legend to perform reaction with the formalin (40% formaldehyde) which acts as target legend. In this paper, both graphene and MoS2 are used as biomolecular acknowledgment element (BAE) and TiO2 as well as SiO2 bilayers is used to improve the sensitivity of the sensor. The numerical results show that the variation of FSPR and SPR angles for inappropriate sensing of formalin is quite insignificant which confirms the absence of formalin. On the other hand, these variations for appropriate sensing are considerably significant that confirm the presence of formalin. At the end of this article, the variation of sensitivity of the proposed biosensor is measured in corresponding to the increment of a refractive index with a refractive index step 0.01 refractive index unit (RIU). In inclusion of TiO2-SiO2 bilayers with graphene-MoS2, a maximum sensitivity of 85.375% is numerically calculated.

Keywords

Surface plasmon resonance formalin detection / grapheme / refractive index / sensitivity

Cite this article

Download citation ▾
Md. Biplob Hossain, Tamanna Tasnim, Lway F. Abdulrazak, Md. Masud Rana, Md. Rabiul Islam. A Numerical Approach to Design the Kretschmann Configuration Based Refractive Index Graphene-MoS2 Hybrid Layers With TiO2-SiO2 Nano for Formalin Detection. Photonic Sensors, 2019, 10(2): 134-146 DOI:10.1007/s13320-019-0566-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hossain M B, Hassan M, Abdulrazak L F, Rana M M, Islam M M, Rahman M S. Graphene-MoS2-Au-TiO2-SiO2 hybrid SPR biosensor for formalin detection: numerical analysis and development. Advanced Materials Letters, 2019, 10(9): 656-662.

[2]

Hossain M B, Rana M M, Abdulrazak L F, Mitra S, Rahman M. Design and analysis of graphene-MoS2 hybrid layer based SPR biosensor with TiO2-SiO2 nano film for formalin detection: numerical approach. Optical and Quantum Electronics, 2019, 51(6): 195-207.

[3]

A. S. Sebaei, A. M. Gomaa, A. A. El-Zwahry, and E. A. Emara, “Graphene-MoS2-Au-TiO2-SiO2 hybrid SPR biosensor: a new window for formalin detection,” International Journal of Analytical Chemistry, vol. 2018, Article ID 2757941, 2018.

[4]

Noordiana N, Fatimah A B, Farhana Y C. Formaldehyde content and quality characteristics of selected fish and sea food from wet markets. International Food Research Journal, 2011, 18(1): 125-136.

[5]

Yeh T S, Lin T C, Chen C C, Wen H M. Analysis of free and bound formaldehyde in squid and squid products by gas chromatography-mass spectrometry. Journal of Food and Drug Analysis, 2013, 21(2): 190-197.

[6]

Bechmann I E. Determination of formaldehyde in frozen fish with formaldehyde dehydrogenase using a flow injection system with an incorporated gel-filtration chromatography column. Analytica Chimica Acta, 1996, 320(2–3): 155-164.

[7]

Ngamchana S, Surareungchai W. Sub-millimolar determination of formalin by pulsed amperometric detection. Analytica Chimica Acta, 2004, 510(2): 195-201.

[8]

Hossain M B, Rana M M, Abdulrazak L F, Mitra S. Graphene-MoS2 with TiO2-SiO2 layers based surface plasmon resonance biosensor: numerical development for formalin detection. Biochemistry and Biophysics Reports, 2019, 18, 100639.

[9]

Rahman M S, Anower M S, Rahman M K, Hasan M R, Hossain M B, Haque M I. Modeling of a highly sensitive MoS2-graphene hybrid based fiber optic SPR biosensor for sensing DNA hybridization. Optik—International Journal for Light and Electron Optics, 2017, 140, 989-997.

[10]

Hossain M B, Rana M M. DNA hybridization detection based on resonance frequency readout in grapheme on Au SPR biosensor. Journal of Sensors, 2016, 16, 6070742-7.

[11]

Rahmana M S, Anower M S, Hasan Md R, Hossain Md B, Haque M I. Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Optics Communications, 2017, 396, 36-43.

[12]

Hossain M B, Akib T B A, Abdulrazak L F, Rana Md M. Numerical modeling of graphenecoated fiber optic surface plasmon resonance biosensor for BRCA1 and BRCA2 genetic breast cancer detection. Optical Engineering, 2019, 58(3): 037104.

[13]

Hossain M B, Rana M M. Graphene coated high sensitive surface plasmon resonance biosensor for sensing DNA hybridization. Sensor Letters, 2016, 14(2): 145-152.

[14]

Shushama K N, Rana M M, Inum R, Hossain M B. Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis. Optics Communications, 2017, 383, 186-190.

[15]

Habib M M, Roy R, Islam M M, Hassan M, Islam M M, Hossain Md B. Study of graphene-MoS2 based SPR biosensor with graphene based SPR biosensor: comparative approach. International Journal of Natural Sciences Research, 2019, 7(1): 1-9.

[16]

Hossain M B, Khan M M R, Rahman M S, Badrudduza S S B, Sabiha M M, . Graphene-MoS2-Au-TiO2-SiO2 hybrid SPR biosensor: A new window for formalin detection. Journal of Materials and Applications, 2019, 8(2): 51-58.

[17]

Islam M M, Islam Md M, Shimul Y C, Rahman A, Ruhe A A, Hassan M, . FDTD analysis fiber optic SPR biosensor for DNA hybridization: a numerical demonstration with graphene. Journal of Materials and Applications, 2019, 8(1): 13-19.

[18]

Hossain M B, Islam M M, Abdulrazak L F, Rana M M, Akib T B A, Hassan M. Graphene-coated optical fiber SPR biosensor for BRCA1 and BRCA2 breast cancer biomarker detection: a numerical design-based analysis. Photonic Sensors, 2019, 9(4): 1-13.

[19]

Mishra A K, Mishra S K, Gupta B D. SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region. Optics Communications, 2015, 344, 86-91.

[20]

Mishra A K, Mishra S K, Gupta B D. Gas-clad two-way fiber optic SPR sensor: a novel approach for refractive index sensing. Plasmonics, 2015, 10(5): 1071-1076.

[21]

Mishra A K, Mishra S K, Verma R K. Graphene and beyond graphene MoS2: a New window in surface-plasmon-resonance-based fiber optic sensing. The Journal of Physical Chemistry C, 2016, 120(5): 2893-2900.

[22]

Mishra A K, Mishra S K. Infrared SPR sensitivity enhancement using ITO/TiO2/silicon overlays. Europhysics Letters, 2015, 112(1): 10001.

[23]

Mishra A K, Mishra S K. MgF2 prism/rhodium/graphene: efficient refractive index sensing structure in optical domain. Journal of Physics: Condensed Matter, 2017, 29, 145001.

[24]

Habib M A, Anower M S, Abdulrazak L F, Reza M S. Hollow core photonic crystal fiber for chemical identification in terahertz regime. Plasmonics, 2019, 52, 101933.

[25]

Mishra A K, Mishra S K. Gas sensing in Kretschmann configuration utilizing bi-metallic layer of rhodium-silver in visible region. Sensors and Actuators B: Chemical, 2016, 237, 969-973.

[26]

Rahman M S, Anower M S, Abdulrazak L F. Utilization of a phosphorene-graphene/TMDC heterostructure in a surface plasmon resonance-based fiber optic biosensor. Photonics and Nanostructures-Fundamentals and Applications, 2019, 35(3): 100711.

[27]

Peng W, Liu Y, Fang P, Liu X, Gong Z, Wang H, . Compact surface plasmon resonance imaging sensing system based on general optoelectronic components. Optics Express, 2014, 22(5): 6174-6185.

[28]

Prabowo B A, Purwidyantri A, Liu K C. Surface plasmon resonance optical sensor: A review on light source technology. Biosensors, 2018, 8(3): 80.

[29]

Unser S, Bruzas I, He J, Sagle L. Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors, 2015, 15(7): 15684-15716.

[30]

Ghamin A, Rubaye A, Nabok A, Tsargorodska A. LSPR biosensor based on nanostructured gold films: detection of mycotoxins. Procedia Technology, 2017, 27, 131-132.

[31]

Wark A W, Lee H J, Corn R M. Long-range surface plasmon resonance imaging for bio affinity sensors. Analytical Chemistry, 2005, 77(13): 3904-3907.

[32]

Zhao X, Zhang X, Xiao S Z, Yi W S. Long-range surface plasmon resonance sensor based on the GK570/Ag coated hollow fiber with an asymmetric layer structure. Optics Express, 2019, 27(7): 9550-9560.

[33]

Fu H, Zhang S, Chen H, Weng J. Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor. IEEE Sensors Journal, 2015, 15(10): 5478-5482.

[34]

Mak K F, Lee C, Hone J, Shan J, Heinz T F. Atomically thin MoS2: A new direct-Gap semiconductor. Physical Review Letters, 2010, 105(13): 136805.

[35]

Oriol L S, Lembke D, Kayci M, Radenovic A, Andras K. Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology, 2013, 8(7): 497-501.

[36]

Hernaez M. Nanostructured materials in optical fiber sensing. The Open Optics Journal, 2014, 7(1): 84-94.

[37]

Rahman M S, Anower M S, Abdulrazak L F, Rahman M M. Modeling of a fiber-optic surface plasmon resonance biosensor employing phosphorene for sensing applications. Optical Engineering, 2019, 58(3): 037103.

[38]

Shalabney A, Abdulhalim I. Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sensor Actuators A: Physal, 2010, 159(1): 24-32.

[39]

Maurya J B, Prajapati Y K, Singh V, Saini J P. Sensitivity enhancement of surface plasmon resonance sensor based on grapheme-MoS2 hybrid structure with TiO2-SiO2 composite layer. Applied Physics A, 2013, 121(2): 525-533.

[40]

Homola J, Piliarik M. Surface plasmon resonance based sensors. Springer, 2006, 4(2): 46-47.

[41]

Shushama K N, Rana M M, Inum R, Hossain M B. Sensitivity enhancement of graphene coated surface plasmon resonance biosensor. Optical and Quantum Electronics, 2017, 49(11): 381.

[42]

Wu L M, Guo J, Dai X Y, Xiang Y J, Fan D Y. Sensitivity enhanced by MoS2-graphene hybrid structure in guided-wave surface plasmon resonance biosensor. Plasmonics, 2018, 13(1): 281-285.

[43]

Wu L, Jia Y, Jiang L Y, Guo J, Dai X Y, Xiang Y J, . Sensitivity improved SPR biosensor based on the MoS2/graphene-aluminum hybrid structure. Journal of Lightwave Technology, 2017, 35(1): 82-87.

[44]

Wu L M, Guo J, Wang Q K, Lu S B, Dai X Y, Xiang Y J, . Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs hetero structure in surface plasmon resonance biochemical sensor. Sensors and Actuators B: Chemical, 2017, 249, 542-548.

[45]

Ball V, Ramsden J J. Buffer dependence of refractive index increments of protein solutions. Biopolymers, 1998, 46(7): 489-492.

[46]

Diéguez L, Darwish N, Mir M, Martínez E, Moreno M, Samitier J. Effect of the refractive index of buffer solutions in evanescent optical biosensors. Sensor Letters, 2009, 7(5): 851-855.

[47]

Hossain M B, Muktadhir S. Multi-structural optical devices modeling using graphene tri-layer sheets. Optik, 2016, 127(15): 5841-5851.

[48]

M. B. Hossain, M. S. Muktadhir, and M. M. Rana, “Modeling graphene macroscopic and microscopic conductivity in the sub-cell FDTD method,” in International Conference on Electrical & Electronic Engineering (ICEEE), Rajshahi, Bangladesh, 2015.

[49]

M. M. Rana, M. B. Hossain, M. R. Islam, and Y. G. Guo, “Surface plasmon polariton propagation modeling for graphene parallel pair sheets using FDTD,” in 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Shanghai, China, 2015.

[50]

M. B. Hossain and M. M. Rana, “An effective compact-FDTD wideband modeling of graphene conductivity,” in 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), Dhaka, Bangladesh, 2015.

[51]

Habib M A, Reza M S, Abdulrazak L F, Anower M S. Extremely high birefringent and low loss microstructure optical waveguide: Design and analysis. Optics Communications, 2019, 446, 93-99.

[52]

Nylander C, Liedberg B, Lind T. Gas detection by means of surface plasmons resonance. Sensors and Actuators, 1982, 3, 79-88.

[53]

Tubb A J C, Payne F P, Millington R B, Lowe C R. Single mode optical fiber surface plasma wave chemical sensor. Sensors and Actuators B, 1997, 41(1–3): 71-79..

[54]

Fano U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). Journal of the Optical Society of America, 1941, 31(3): 213-222.

[55]

Earp R L, Dessy R E. Surface plasmon resonance. Commercial Biosensors: Applications to Clinical, Bioprocess, and Environmental Samples, 1998, New York: John Wiley and Sons

[56]

Rahman M S, Noor S S, Anower M S, Abdulrazak L F, Rahman M M, Rikta K A. Design and numerical analysis of a graphene-coated fiber-optic SPR biosensor using tungsten disulfide. Photonics and Nanostructures-Fundamentals and Applications, 2019, 33, 29-35.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/