Polydopamine-Assisted Fabrication of Stable Silver Nanoparticles on Optical Fiber for Enhanced Plasmonic Sensing

Yiwen Tang , Hui Yuan , Jiangping Chen , Qiguo Xing , Rongxin Su , Wei Qi , Zhimin He

Photonic Sensors ›› 2019, Vol. 10 ›› Issue (2) : 97 -104.

PDF
Photonic Sensors ›› 2019, Vol. 10 ›› Issue (2) : 97 -104. DOI: 10.1007/s13320-019-0564-7
Regular

Polydopamine-Assisted Fabrication of Stable Silver Nanoparticles on Optical Fiber for Enhanced Plasmonic Sensing

Author information +
History +
PDF

Abstract

We present a facile and effective method for fabrication of the localized surface plasmon resonance (LSPR) optical fiber sensor assisted by two polydopamine (PDA) layers with enhanced plasmonic sensing performance. The first PDA layer was self-polymerized onto the bare optical fiber to provide the catechol groups for the reduction from Ag+ to Ago through chelating and redox activity. As the reduction of Ag+ proceeds, Ag nanoparticles (NPs) were grown in-situ on the PDA layer with uniform distribution. The second PDA layer was applied to prevent Ag NPs from oxidating and achieve an improvement of LSPR signal. The PDA/Ag/PDA-based optical fiber sensor has an enhanced LSPR sensitivity of 961 nm/RIU and excellent oxidation resistance. The stable PDA/Ag/PDA-based LSPR sensor with high optical performance is very promising for future application in optical sensing field.

Keywords

LSPR / optical fiber / polydopamine / in-situ growth / silver nanoparticles

Cite this article

Download citation ▾
Yiwen Tang, Hui Yuan, Jiangping Chen, Qiguo Xing, Rongxin Su, Wei Qi, Zhimin He. Polydopamine-Assisted Fabrication of Stable Silver Nanoparticles on Optical Fiber for Enhanced Plasmonic Sensing. Photonic Sensors, 2019, 10(2): 97-104 DOI:10.1007/s13320-019-0564-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peláez E C, Estevez M C, Portela A, Salvador J P, Marco M P, Lechuga L M. Nanoplasmonic biosensor device for the monitoring of acenocoumarol therapeutic drug in plasma. Biosensors and Bioelectronics, 2018, 119, 149-155.

[2]

Wang Y, Meng S, Liang Y, Li L, Peng W. Fiber-optic surface plasmon resonance sensor with multi-alternating metal layers for biological measurement. Photonic Sensors, 2013, 3(3): s202-207.

[3]

Alula M T, Karamchand L, Hendricks N R, Blackburn J M. Citrate-capped silver nanoparticles as a probe for sensitive and selective colorimetric and spectrophotometric sensing of creatinine in human urine. Analytica Chimica Acta, 2018, 1007, 40-49.

[4]

Jiang Q, Xue M, Liang P, Zhang C, Lin J, Ouyang J. Principle and experiment of protein detection based on optical fiber sensing. Photonic Sensors, 2017, 7(4): 317-324.

[5]

Malinsky M D, Kelly K L, Schatz G C, Van Duyne R P. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. Journal of the American Chemical Society, 2001, 123(7): 1471-1482.

[6]

Haynes C L, Haes A J, McFarland A D, Van Duyne R P. Nanoparticles with tunable localized surface plasmon resonances. Radiative Decay Engineering, 2005, Boston, MA: Springer, 47-99.

[7]

Zhao J, Zhang X, Yonzon C R, Haes A J, Van Duyne R P. Localized surface plasmon resonance biosensors. Nanomedicine, 2006, 1(2): 219-228.

[8]

Jia K, Khaywah M Y, Li Y, Bijeon J L, Adam P M, Déurche R, . Strong improvements of localized surface plasmon resonance sensitivity by using Au/Ag bimetallic nanostructures modified with polydopamine films. ACS Applied Materials & Interfaces, 2014, 6(1): 219-227.

[9]

Consales M, Pisco M, Cusano A. Lab-on-fiber technology: a new avenue for optical nanosensors. Photonic Sensors, 2012, 2(4): 289-314.

[10]

Sciacca B, Monro T M. Dip biosensor based on localized surface plasmon resonance at the tip of an optical fiber. Langmuir, 2014, 30(3): 946-954.

[11]

Lin T J, Chung M F. Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance. Biosensors and Bioelectronics, 2009, 24(5): 1213-1218.

[12]

Chen Y Q, Lu C J. Surface modification on silver nanoparticles for enhancing vapor selectivity of localized surface plasmon resonance sensors. Sensors and Actuators B: Chemical, 2009, 135(2): 492-498.

[13]

Chen K J, Lu C J. A vapor sensor array using multiple localized surface plasmon resonance bands in a single UV-vis spectrum. Talanta, 2010, 81(4): 1670-1675.

[14]

Cao J, Tu M H, Sun T, Grattan K T V. Wavelength-based localized surface plasmon resonance optical fiber biosensor. Sensors and Actuators B: Chemical, 2013, 181, 611-619.

[15]

Shao Y, Xu S, Zheng X, Wang Y, Xu W. Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer. Sensors, 2010, 10(4): 3585-3596.

[16]

Shi S, Wang L, Su R, Liu B, Huang R, Qi W, He Z. A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays. Biosensors & Bioelectronics, 2015, 74, 454-460.

[17]

Chen Y, Ming H. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sensors, 2012, 2(1): 37-49.

[18]

Lee H, Dellatore S M, Miller W M, Messersmith P B. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318(5849): 426-430.

[19]

Hong S, Na Y S, Choi S, Song I T, Kim W Y, Lee H. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Advanced Functional Materials, 2012, 22(22): 4711-4717.

[20]

Vecchia N F D, Avolio R, Alfè M, Errico M E, Napolitano A, D’Ischia M. Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point. Advanced Functional Materials, 2013, 23(10): 1331-1340.

[21]

Zangmeister R A, Morris T A, Tarlov M J. Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir, 2013, 29(27): 8619-8628.

[22]

Shi S, Wang L B, Wang A K, Huang R L, Ding L, Su R X, . Bioinspired fabrication of optical fiber SPR sensors for immunoassays using polydopamine-accelerated electroless plating. Journal of Materials Chemistry C, 2016, 4(32): 7554-7562.

[23]

Gao C, Hu Y, Wang M, Chi M, Yin Y. Fully alloyed Ag/Au nanospheres: combining the plasmonic property of ag with the stability of Au. Journal of the American Chemical Society, 2014, 136(20): 7474-7479.

[24]

Taflove A, Hagness S C. Computational electrodynamics: the finite-difference time-domain method, 2005, Boston, United States: Artech House

[25]

Palik E D, Ghosh G. Handbook of optical constants of solids, 1998, San Diego, United States: Academic Press

[26]

Liu T, Wang W, Liu F, Wang S. Photochemical deposition fabricated highly sensitive localized surface plasmon resonance based optical fiber sensor. Optics Communications, 2018, 427, 301-305.

[27]

Ortega-Mendoza J G, Padilla-Vivanco A, Toxqui-Quitl C, Zaca-Morã N P, Villegas-Hernã N D, Chã V F. Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end. Sensors, 2014, 14(10): 18701-18710.

[28]

Cinel N A, Serkan B, Ekmel Z. Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance. Optics Express, 2012, 20(3): 2587.

[29]

Chen J P, Shi S, Su R X, Qi W, Huang R L, Wang M F, . Optimization and application of reflective lspr optical fiber biosensors based on silver nanoparticles. Sensors, 2015, 15(6): 12205-12217.

[30]

Tabasi O, Falamaki C. Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors. Analytical Methods, 2018, 10(32): 3906-3925.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/