Enhancement of Surface Plasmon Fiber Sensor Sensitivity Through the Grafting of Gold Nanoparticles

Elena Miliutina , Yevgeniya Kalachyova , Pavel Postnikov , Vaclav Švorčík , Oleksiy Lyutakov

Photonic Sensors ›› 2019, Vol. 10 ›› Issue (2) : 105 -112.

PDF
Photonic Sensors ›› 2019, Vol. 10 ›› Issue (2) : 105 -112. DOI: 10.1007/s13320-019-0562-9
Regular

Enhancement of Surface Plasmon Fiber Sensor Sensitivity Through the Grafting of Gold Nanoparticles

Author information +
History +
PDF

Abstract

The optical fibers, coated with plasmonic active metal films, represent the simple and unpretentious sensors, potentially useful for measurements of physical or chemical quantities and wide range of analytical application. All fiber-based plasmonic sensors operate on the same physical principle based on changes in the position of the plasmon absorption peak induced by a variation of surrounding medium refractive index. However, the observed spectral differences are often weak, and thus an enhancement of sensor sensitivity is strongly required. In this paper, we propose the immobilization of gold nanoparticles with sharp edges on the thin gold layer, deposited on the multimode fiber surface for improvement of the sensor functionality. The morphological and compositional changes in the gold covered fiber surface were determined by using the atomic force microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy methods. As a result of gold nanoparticles immobilization, the pronounced plasmon energy concentration near the fiber surface occurred, thus enhancing the response of the proposed hybrid plasmonic system to the variation of ambient refractive index. The position of plasmon absorption in the case of the created plasmonic structure was shown to be more sensitive to the changes in the surrounding medium in comparison with the standard sensors based on the bare gold layer.

Keywords

Optical fiber / surface plasmon resonance / thin gold film / gold nanoparticles / sensitivity enhancement

Cite this article

Download citation ▾
Elena Miliutina, Yevgeniya Kalachyova, Pavel Postnikov, Vaclav Švorčík, Oleksiy Lyutakov. Enhancement of Surface Plasmon Fiber Sensor Sensitivity Through the Grafting of Gold Nanoparticles. Photonic Sensors, 2019, 10(2): 105-112 DOI:10.1007/s13320-019-0562-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guselnikova O, Postnikov P, Erzina M, Kalachyova Y, Švorčík V, Lyutakov O. Pretreatment-free selective and reproducible SERS-based detection of heavy metal ions on DTPA functionalized plasmonic platform. Sensors and Actuators B: Chemical, 2017, 253, 830-838.

[2]

Liu S, Zheng Z, Li X. Advances in pesticide biosensors: current status challenges and future perspectives. Analytical and Bioanalytical Chemistry, 2013, 405(1): 63-90.

[3]

Stevens R C, Soelberg S D, Near S, Furlong C E. Detection of cortisol in saliva with a flow-filtered portable surface plasmon resonance biosensor system. Analytical Chemistry, 2008, 80(17): 6747-6751.

[4]

Guo X. Surface plasmon resonance based biosensor technique: a review. Journal of Biophotonics, 2012, 5(7): 483-501.

[5]

Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P. Biosensing with plasmonic nanosensors. Nature Materials, 2008, 7(6): 442-453.

[6]

Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics, 2010, 4(2): 83-91.

[7]

Svanda J, Kalachyova Y, Slepicka P, Svorcik V, Lyutakov O. Smart component for switching of plasmon resonance by external electric field. ACS Applied Materials & Interfaces, 2015, 8(1): 225-231.

[8]

Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Analytical and Bioanalytical Chemistry, 2015, 407(14): 3883-3897.

[9]

Wadell C, Syrenova S, Langhammer C. Plasmonic hydrogen sensing with nanostructured metal hydrides. ACS Nano, 2014, 8(12): 11925-11940.

[10]

Arghir I, Delport F, Spasic D, Lammertyn J. Smart design of fiber optic surfaces for improved plasmonic biosensing. New Biotechnology, 2015, 32(5): 473-484.

[11]

Khansili N, Rattu G, Krishna P M. Label-free optical biosensors for food and biological sensor applications. Sensors and Actuators B: Chemical, 2018, 265, 35-49.

[12]

Abdulhalim I, Zourob M, Lakhtakia A. Surface plasmon resonance for biosensing: a mini-review. Electromagnetics, 2008, 28(3): 214-242.

[13]

Slavík R, Homola J. Ultrahigh resolution long range surface plasmon-based sensor. Sensors and Actuators B: Chemical, 2007, 123(1): 10-12.

[14]

Chen Y, Yu Y, Li X, Tan Z, Geng Y. Experimental comparison of fiber-optic surface plasmon resonance sensors with multi metal layers and single silver or gold layer. Plasmonics, 2015, 10(6): 1801-1808.

[15]

Homola J. Surface plasmon resonance (SPR). Analytical and Bioanalytical Chemistry, 2003, 377, 528-539.

[16]

Hu W, Huang Y, Chen C, Liu Y, Guo T, Guan B O. Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification. Sensors and Actuators B: Chemical, 2018, 264, 440-447.

[17]

Voisin V, Pilate J, Damman P, Mégret P, Caucheteur C. Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors. Biosensors and Bioelectronics, 2014, 51, 249-254.

[18]

Liu Q, Liu Y, Chen S, Wang F, Peng W. A low-cost and portable dual-channel fiber optic surface plasmon resonance system. Sensors, 2017, 17(12): 2797-2804.

[19]

Lee B, Park J H, Byun J Y, Kim J H, Kim M G. An optical fiber-based LSPR aptasensor for simple and rapid in-situ detection of ochratoxin. Biosensors and Bioelectronics, 2018, 102, 504-509.

[20]

Mishra S K, Gupta B D. Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers. Analyst, 2013, 138(9): 2640-2646.

[21]

Yang X, Lu Y, Liu B, Yao J. High sensitivity hollow fiber temperature sensor based on surface plasmon resonance and liquid filling. IEEE Photonics Journal, 2018, 10(2): 1-9.

[22]

Masson J F, Obando L, Beaudoin S, Booksh K. Sensitive and real-time fiber-optic-based surface plasmon resonance sensors for myoglobin and cardiac troponin I. Talanta, 2004, 62(5): 865-870.

[23]

Guo T, Liu F, Guan B O, Albert J. Tilted fiber grating mechanical and biochemical sensors. Optics & Laser Technology, 2016, 78, 19-33.

[24]

Jia P, Yang J. Integration of large-area metallic nanohole arrays with multimode optical fibers for surface plasmon resonance sensing. Applied Physics Letters, 2013, 102(24): 243107.

[25]

Nemova G, Kashyap R. Fiber-Bragg-grating-assisted surface plasmon-polariton sensor. Optics Letters, 2006, 31(14): 2118-2120.

[26]

Kalachyova Y, Mares D, Jerabek V, Ulbrich P, Lapcak L, Svorcik V, . Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles. Physical Chemistry Chemical Physics, 2017, 19(22): 14761-14769.

[27]

Kalachyova Y, Mares D, Jerabek V, Zaruba K, Ulbrich P, Lapcak L, . The effect of silver grating and nanoparticles grafting for LSP-SPP coupling and SERS response intensification. The Journal of Physical Chemistry C, 2016, 120(19): 10569-10577.

[28]

Maurer T, Adam P M, Lévêque G. Coupling between plasmonic films and nanostructures: from basics to applications. Nanophotonics, 2015, 4(3): 363-382.

[29]

Kaminska I, Maurer T, Nicolas R, Renault M, Lerond T, Salas-Montiel R, . Near-field and far-field sensitivities of LSPR sensors. The Journal of Physical Chemistry C, 2015, 119(17): 9470-9476.

[30]

Saini A, Medwal R, Bedi S, Mehta B, Gupta R, Maurer T, . Axonic Au tips induced enhancement in Raman spectra and biomolecular sensing. Plasmonics, 2015, 10(3): 617-623.

[31]

Kalachyova Y, Olshtrem A, Guselnikova O A, Postnikov P S, Elashnikov R, Ulbrich P, . Synthesis characterization and antimicrobial activity of near-IR photoactive functionalized gold multibranched nanoparticles. Chemistryopen, 2017, 6(2): 254-260.

[32]

Bhatia P, Gupta B D. Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement. Applied Optics, 2011, 50(14): 2032-2036.

[33]

Singh S, Mishra S K, Gupta B D. Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides. Sensors and Actuators A: Physical, 2013, 193, 136-140.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/