High Sensitivity Plasmonic Metal-Dielectric-Metal Device With Two Side-Coupled Fano Cavities

Yunqing Lu , Jiong Xu , Min Xu , Ji Xu , Jin Wang , Jiajin Zheng

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (3) : 205 -212.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (3) : 205 -212. DOI: 10.1007/s13320-019-0555-8
Regular

High Sensitivity Plasmonic Metal-Dielectric-Metal Device With Two Side-Coupled Fano Cavities

Author information +
History +
PDF

Abstract

In this paper, we propose a compact plasmonic sensor structure comprised of a metal-dielectric-metal (MDM) waveguide, and a baffle plate in waveguide core and two side-coupled rectangular cavities. In this structure, two Fano resonances are achieved and can be tuned independently by changing the structural parameters of the cavities. Especially, when the resonant wavelengths of the two Fano resonances are the same, the sensing sensitivity can be enhanced by coupling between two Fano resonances. By investigating the transmission spectrum, the effect of structural parameters on Fano resonances and the refractive index sensitivity of the sensor structure are analyzed in detail. The numerical simulations demonstrate a sensitivity as high as 1295nm/RIU and a figure of merit of 1647.

Keywords

Fano resonance / MDM waveguide / sensor

Cite this article

Download citation ▾
Yunqing Lu, Jiong Xu, Min Xu, Ji Xu, Jin Wang, Jiajin Zheng. High Sensitivity Plasmonic Metal-Dielectric-Metal Device With Two Side-Coupled Fano Cavities. Photonic Sensors, 2018, 9(3): 205-212 DOI:10.1007/s13320-019-0555-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pitarke J M, Silkin V M, Chulkov E V, Echenique P M. Theory of surface plasmons and surface-plasmon polaritons. Reports on Progress in Physics, 2006, 70(1): 1-87.

[2]

Dionne J A, Sweatlock L A, Atwater H A, Polman A. Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Physical Review B, 2006, 73(3): 035407-1–9.

[3]

Lai W, Wen K, Lin J, Guo Z, Hu Q, Fang Y. Plasmonic filter and sensor based on a subwavelength end-coupled hexagonal resonator. Applied Optics, 2018, 57(22): 6369-6374.

[4]

Fang M, Shi F, Chen Y. Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide. Plasmonics, 2016, 11, 197-203.

[5]

Lu H, Liu X, Mao D, Wang G. Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Optics Letters, 2012, 37(18): 3780-3782.

[6]

Zhou X, Zhang L, Armani M, Zhang D, Duan X, Liu J, . On-chip biological and chemical sensing with reversed Fano lineshape enabled by embedded microring resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(3): 35-44.

[7]

Fano U. Effects of configuration interaction on intensities and phase shifts. Physical Review, 1961, 124(6): 1866-1878.

[8]

Chen Z, Li Y, Wang L, Duan G, Zhao Y, Xiao J. Sharp asymmetric line shapes in a plasmonic waveguide system and its application in nanosensor. Journal of Lightwave Technology, 2015, 33(15): 3250-3253.

[9]

Wen K, Hu Y, Chen L, Zhou J, He M, Lei L, . Fano resonance based on end-coupled cascaded-ring MIM waveguides structure. Plasmonics, 2017, 12(6): 1875-1880.

[10]

Qiao L, Zhang G, Wang Z, Fan G, Yan Y. Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons. Optics Communications, 2019, 433, 144-149.

[11]

Yun B, Zhang R, Hu G, Cui Y. Ultra sharp Fano resonances induced by coupling between plasmonic stub and circular cavity resonators. Plasmonics, 2016, 11(4): 1157-1162.

[12]

Lu H, Liu X, Mao D. Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Physical Review A, 2012, 85(5): 53803-1–53803-7.

[13]

Deng Y, Cao G, Yang H, Li G, Chen X, Lu W. Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities. Scientific Reports, 2017, 7(1): 10639.

[14]

Zhan S, Li H, Cao G, He Z, Li B, Yang H. Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system. Journal of Physics D: Applied Physics, 2014, 47(20): 205101.

[15]

Wen K, Hu Y, Chen L, Zhou J, Lei L, Meng Z. Single/dual Fano resonance based on plasmonic metal-dielectric-metal waveguide. Plasmonics, 2016, 11, 315-321.

[16]

Shi X, Ma L, Zhang Z, Tang Y, Zhang Y, Han J, . Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system. Optics Communications, 2018, 427, 326-330.

[17]

Li C, Li S, Wang Y, Jiao R, Wang L, Yu L. Multiple Fano resonances based on plasmonic resonator system with end-coupled cavities for high performance nanosensor. IEEE Photonics Journal, 2017, 9(6): 4801509.

[18]

Guo Z, Wen K, Hu Q, Lai W, Lin J, Fang Y. Plasmonic multichannel refractive index sensor based on subwavelength tangent-ring metal-insulator-metal waveguide. Sensors, 2018, 18(5): 1348.

[19]

Wen K, Chen L, Zhou J, Lei L, Fang Y. A plasmonic chip-scale refractive index sensor design based on multiple Fano resonances. Sensors, 2018, 18(10): 3181.

[20]

Johnson P B, Christy R W. Optical constants of the Noble metals. Physical Review B, 1972, 6(12): 4370-4379.

[21]

Suh W, Wang Z, Fan S. Temporal coupledmode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE Journal of Quantum Electronics, 2004, 40(10): 1511-1518.

[22]

Fan S, Suh W, Joannopoulos J D. Temporal coupled-mode theory for the Fano resonance in optical resonators. Journal of Optical Society of America A, 2003, 20(3): 569-72.

[23]

Li Q, Wang T, Su Y, Yan M, Qiu M. Temporal coupled-mode theory for the Fano resonance in optical resonators. Optics Express, 2010, 18(8): 8367-8382.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/