LD-Pumped Random Fiber Laser Based on Erbium-Ytterbium Co-Doped Fiber

Qingyang Meng , Han Wu , Bing Han , Jiaqi Li , Zinan Wang

Photonic Sensors ›› 2019, Vol. 10 ›› Issue (2) : 181 -185.

PDF
Photonic Sensors ›› 2019, Vol. 10 ›› Issue (2) : 181 -185. DOI: 10.1007/s13320-019-0553-x
Regular

LD-Pumped Random Fiber Laser Based on Erbium-Ytterbium Co-Doped Fiber

Author information +
History +
PDF

Abstract

In this paper, a cladding-pumped erbium-ytterbium co-doped random fiber laser (EYRFL) operating at 1550 nm with high power laser diode (LD) is proposed and experimentally demonstrated for the first time. The laser cavity includes a 5-m-long erbium-ytterbium co-doped fiber that serves as the gain medium, as well as a 2-km-long single-mode fiber (SMF) to provide random distributed feedback. As a result, stable 2.14 W of 1550nm random lasing at 9.80 W of 976 nm LD pump power and a linear output with the slope efficiency as 22.7% are generated. This simple and novel random fiber laser could provide a promising way to develop high power 1.5 µm light sources.

Keywords

Random fiber laser / erbium-ytterbium co-doped / cladding pumping

Cite this article

Download citation ▾
Qingyang Meng, Han Wu, Bing Han, Jiaqi Li, Zinan Wang. LD-Pumped Random Fiber Laser Based on Erbium-Ytterbium Co-Doped Fiber. Photonic Sensors, 2019, 10(2): 181-185 DOI:10.1007/s13320-019-0553-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, et al., “Random distributed feedback fiber laser,” Nature Photonics, 2010, 4: 231–235.

[2]

Churkin D V, Sugavanam S, Vatnik I D, Wang Z, Podivilov E V, Babin S A, . Recent advances in fundamentals and applications of random fiber lasers. Advances in Optics and Photonics, 2015, 7(3): 516-569.

[3]

J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Optics Express, 20(24): 27376–27381.

[4]

Tan M, Rosa P, Le S T, Iqbal Md A, Phillips I D, Harper P. Transmission performance improvement using random DFB laser based Raman amplification and bidirectional second-order pumping. Optics Express, 2016, 24(3): 2215-2221.

[5]

Redding B, Choma M A, Cao H. Speckle-free laser imaging using random laser illumination. Nature Photonics, 2012, 6(6): 355-359.

[6]

Redding B, Ahmadi P, Mokan V, Seifert M, Choma M A, Cao H. Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging. Optics Letters, 2015, 40(20): 4607-4610.

[7]

Gomes A S L, Lima B C, Pincheira P I R, Moura A L, Raposo M G E P, . Glassy behavior in a one-dimensional continuous-wave erbium-doped random fiber laser. Physical Review A, 2016, 94(1): 011801.

[8]

Ma R, Rao Y J, Zhang W L, Hu B. Multimode random fiber laser for speckle-free imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(1): 0900106.

[9]

Zhang H, Zhou P, Wang X, Du X, Xiao H, Xu X. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150nm and its application in mid-infrared laser generation. Optics Express, 2015, 23(13): 17138-17144.

[10]

Du X, Zhang H, Ma P, Xiao H, Wang X, Zhou P, Liu Z. Kilowatt-level fiber amplifier with spectral-broadening-free property, seeded by a random fiber laser. Optics Letters, 2015, 40(22): 5311-5314.

[11]

Xu J M, Ye J, Zhou P, Leng J Y, Xiao H, Zhang H W, . Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality. Science China Technological Sciences, 2019, 62(1): 80-86.

[12]

Zhang H, Ye J, Zhou P, Wang X L, Leng J Y, Xu J M, . Tapered-fiber-enabled high-power, high-spectral-purity random fiber lasing. Optics Letters, 2018, 43(17): 4152-4155.

[13]

Wang Z, Wu H, Fan M, Zhang L, Rao Y, Zhang W, . High power random fiber laser with short cavity length: theoretical and experimental investigations. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 10-15.

[14]

Sugavanam S, Yan Z, Kamynin V, Kurkov A, Zhang L, Churkin D V. Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter. Optics Express, 2014, 22(3): 2839-2844.

[15]

El-Taher A E, Harper P, Babin S A, Churkin D V, Podivilov E V, Ania-Castanon J D, . Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation. Optics Letters, 2011, 36(2): 130-132.

[16]

Zhang L, Jiang H, Yang X, Pan W, Feng Y. Ultra-wide wavelength tuning of a cascaded Raman random fiber laser. Optics Letters, 2016, 41(2): 215-218.

[17]

Ye J, Xu J, Song J, Wu H S, Zhang H W, Wu J, . Spectrum-agile hundred-watt-level high-power random fiber laser enabled by watt-level tunable optical filter. Applied Physics Express, 2018, 11(6): 062704.

[18]

Leandro D, Rota-Rodrigo S, Ardanaz D, Lopez-Amo M. Narrow-linewidth multi-wavelength random distributed feedback laser. Journal of Lightwave Technology, 2015, 33(17): 3591-3596.

[19]

Zhu T, Bao X, Chen L. A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering. Optics Communications, 2012, 285(6): 1371-1374.

[20]

Zlobina E A, Kablukov S I, Babin S A. Linearly polarized random fiber laser with ultimate efficiency. Optics Letters, 2015, 40(17): 4074-4077.

[21]

Babin S A, Zlobina E A, Kablukov S I, Podivilov E V. High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth. Scientific Reports, 2016, 6, 22625.

[22]

Ye J, Xu J, Song J, Xu H Y, Wu H S, Zhang H W, . Power scalability of linearly polarized random fiber laser through polarization-rotation-based Raman gain manipulation. Optics Express, 2018, 26(18): 22894-22903.

[23]

Xu J, Lou Z, Ye J, Wu J, Leng J, Xiao H, . Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects. Optics Express, 2017, 25(5): 5609-5617.

[24]

Vatnik I D, Churkin D V, Podivilov E V, Babin S A. High efficiency generation in a short random fiber laser. Laser Physics Letters, 2014, 11(7): 075101.

[25]

Du X, Zhang H, Wang X, Zhou P, Liu Z. Short cavity-length random fiber laser with record power and ultrahigh efficiency. Optics Letters, 2016, 41(3): 571-574.

[26]

Wu H, Wang Z, Fan M, Zhang L, Zhang W, Rao Y. Role of the mirror’s reflectivity in forward-pumped random fiber laser. Optics Express, 2015, 23(2): 1421-1427.

[27]

Zhang H, Zhou P, Xiao H, Xu X. Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power. Laser Physics Letters, 2014, 11(11): 075104.

[28]

Wu H, Wang Z N, Sun W, . 1.5 µm Low threshold, high efficiency random fiber laser with hybrid erbium-Raman gain. Journal of Lightwave Technology, 2018, 36(4): 844-849.

[29]

Wang L, Dong X, Shum P, Su H. Tunable erbium-doped fiber laser based on random distributed feedback. IEEE Photonics Journal, 2014, 6(5): 1-5.

[30]

Wang L L, Dong X Y, Shum P P, Huang C Q, H, Su B. Erbium-doped fiber laser with distributed Rayleigh output mirror. Laser Physics, 2014, 24(11): 115101.

[31]

Sugavanam S, Zulkifli M Z, Churkin D V. Multi-wavelength erbium/Raman gain based random distributed feedback fiber laser. Laser Physics, 2016, 26(1): 015101.

[32]

Townsend J E, Barnes W L, Jedrzejewski K P, Grubb S G. Yb sensitised Er doped silica optical fiber with ultrahigh transfer efficiency and gain. Electronics Letters, 1991, 27(21): 1958-1959.

[33]

Nilsson J, Alam S-U, Alvarez-Chavez J A, Turner P W, Clarkson A A, Grudinin A B. “”. IEEE Journal of Quantum Electronics, 2003, 39(8): 987-994.

[34]

Jelger J W K P, Sahu J K, Laurell F, Clarkson W A. High-power and wavelength-tunable operation of an Er/Yb fiber laser using a volume Bragg grating. Optics Letters, 2008, 33(11): 1204-1206.

[35]

Han Q, Ning J, Sheng Z. Numerical investigation of the ASE and power scaling of cladding-pumped Er-Yb codoped fiber amplifiers. IEEE Journal of Quantum Electronics, 2010, 46(11): 1535-1541.

[36]

Pasquale F D. Modeling of highly-efficient grating-feedback and Fabry-Perot Er3+-Yb3+ co-doped fiber lasers. IEEE Journal of Quantum Electronics-Institute Electrical and Electronic Engineers, 1996, 32(2): 326-332.

[37]

M. Karasek, “Optimum design of Er3+-Yb3+, codoped fibers for large-signal high-pump-power applications,” IEEE Journal of Quantum Electronics, 33(10): 1699–1705.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/