Spectrally Flat Supercontinuum Generation in a ZBLAN Fiber Pumped by Erbium-Doped Mode-Locked Fiber Laser

Huanhuan Liu , Ye Yu , Wei Song , Qiao Jiang , Fufei Pang , Tingyun Wang

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (4) : 302 -308.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (4) : 302 -308. DOI: 10.1007/s13320-019-0552-y
Regular

Spectrally Flat Supercontinuum Generation in a ZBLAN Fiber Pumped by Erbium-Doped Mode-Locked Fiber Laser

Author information +
History +
PDF

Abstract

We have experimentally demonstrated the flat supercontinuum (SC) generation using a 10-m-long ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fluoride fiber pumped by an erbium-doped mode-locked fiber laser incorporating carbon-nanotube-based saturable absorbers. In order to improve the spectral flatness of SC, the standardized single-mode fiber with different lengths is connected to the output of the mode-locked fiber laser before the pulse amplification. The generated SC with ZBLAN fiber exhibits the best spectral flatness with fluctuation less than 1.29dB over the wavelength of 1571.8nm–1803.1nm, showing potential applications in optical sensing.

Keywords

Flat supercontinuum / ZBLAN / mode-locked fiber laser

Cite this article

Download citation ▾
Huanhuan Liu, Ye Yu, Wei Song, Qiao Jiang, Fufei Pang, Tingyun Wang. Spectrally Flat Supercontinuum Generation in a ZBLAN Fiber Pumped by Erbium-Doped Mode-Locked Fiber Laser. Photonic Sensors, 2018, 9(4): 302-308 DOI:10.1007/s13320-019-0552-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lambert-Girard S, Allard M, Piché M, Babin F. Differential optical absorption spectroscopy lidar for mid-infrared gaseous measurements. Applied Optics, 2015, 54(7): 1647-1656.

[2]

Petersen C R, Møller U, Kubat I, Zhou B B, Dupont S, Ramsay J, Benson T, . Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photonics, 2014, 8(11): 830-834.

[3]

Mukherjee A, Porten S V D, Patel C K N. Standoff detection of explosive substances at distances of up to 150 m. Applied Optics, 2010, 49(11): 2072-2078.

[4]

Takashi B, Conley N C, Choi S W. Multispectral photoacoustic microscopy of lipids using a pulsed supercontinuum laser. Biomedical Optics Express, 2018, 9(1): 276-288.

[5]

Alexander V V, Shi Z N, Islam M N, Ke K, Kalinchenko G, Freeman M J, . Field trial of active remote sensing using a high-power short-wave infrared supercontinuum laser. Applied Optics, 2013, 52(27): 6813-6823.

[6]

Lin C, Stolen R H. New nanosecond continuum for excited-state spectroscopy. Applied Physics Letters, 1976, 28(4): 216-218.

[7]

Michalska M, Mikolajczyk J, Woijas J, Swiderski J. Mid-infrared, super-flat, supercontinuum generation covering the 2–5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses. Scientific Reports, 2016, 6, 39138-1-39138-6.

[8]

Yang L Y, Zhang B, Yin K, Wu T Y, Zhao Y J, Hou J. Spectrally flat supercontinuum generation in a holmium-doped ZBLAN fiber with record power ratio beyond 3 μm. Photonics Research, 2018, 6(5): 417-421.

[9]

Gauthier J C, Fortin V, Carrée J Y, Poulain S, Poulain M, Vallée R, . Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber. Optics Letters, 2016, 41(8): 1756-1759.

[10]

Liu K, Liu J, Shi H X, Tan F Z, Wang P. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8W average output power. Optics Express, 2014, 22(20): 24384-24391.

[11]

Møller U, Yu Y, Kubat L, Petersen C R, Gai X, Brilland L, Méchin D, . Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Optics Express, 2015, 23(3): 3282-3291.

[12]

Théberge F, Bérubé N, Poulain S, Cozic S, Robichaud L R, Bernier M, . Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers. Photonics Research, 2018, 6(6): 609-613.

[13]

Yang W Q, Zhang B, Yin K, Zhou X F, Hou J. High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system. Optics Express, 2013, 21(17): 19732-19742.

[14]

Jiang X, Joly N Y, Finger M A, Babic F, Wong G K L, Travers J C, . Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nature Photonics, 2015, 9(2): 133-139.

[15]

Qin G S, Yan X, Kito C C, Liao M S, Chaudhari C, Suzuki T, . Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber. Applied Physics Letters, 2009, 95(16): 161103-1-161103-3.

[16]

Liang T, Feng X M. Research progress toward flat supercontinuum generation in fibers. Laser & Optoelectronics Progress, 2016, 53(6): 10-28.

[17]

Shi L L Y, Sordillo L A, Rodríguez-Contreras A, Alfano R R. Transmission in near-infrared optical windows for deep brain imaging. Journal of Biophotonics, 2016, 9(1–2): 38-43.

[18]

Yemineni S R, Lai W J, Alphones A, Shum P. Mid-IR supercontinuum generation in a single-mode ZBLAN fiber by erbium-doped fiber laser. Optical Engineering, 2018, 57(11): 111804-1-111804-5.

[19]

Heidt A M. Pulse preserving flat-top super -continuum generation in all-normal dispersion photonic crystal fibers. Journal of the Optical Society of America B Optical Physics, 2010, 27(3): 550-559.

[20]

Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 2006, 78(4): 1135-1184.

[21]

Liu L, Qin G S, Tian Q J, Zhao D, Qin W P. Numerical investigation of mid-infrared supercontinuum generation up to 5 μm in single mode fluoride fiber. Optics Express, 2011, 19(11): 10041-10048.

[22]

Agger C, Petersen C, Dupont S, Steffensen H, Lyngsø J K, Thomsen C L, . Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation. Journal of the Optical Society of America B Optical Physics, 2012, 29(4): 635-645.

[23]

Swiderski J. High-power mid-infrared supercontinuum sources: Current status and future perspectives. Progress in Quantum Electronics, 2014, 38(5): 189-235.

[24]

Yin K, Zhang B, Yang L Y, Hou J. 15.2 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8 μm. Optics Letters, 2017, 42(12): 2334-2337.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/