Trace Ammonia Detection Based on Near-Infrared Fiber-Optic Cantilever-Enhanced Photoacoustic Spectroscopy

Min Guo , Ke Chen , Zhenfeng Gong , Qingxu Yu

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (4) : 293 -301.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (4) : 293 -301. DOI: 10.1007/s13320-019-0545-x
Regular

Trace Ammonia Detection Based on Near-Infrared Fiber-Optic Cantilever-Enhanced Photoacoustic Spectroscopy

Author information +
History +
PDF

Abstract

A trace ammonia (NH3) detection system based on the near-infrared fiber-optic cantilever-enhanced photoacoustic spectroscopy (CEPAS) is proposed. A fiber-optic extrinsic Fabry-Perot interferometer (EFPI) based cantilever microphone has been designed to detect the photoacoustic pressure signal. The microphone has many advantages, such as small size and high sensitivity. A near-infrared tunable erbium-doped fiber laser (EDFL) amplified by an erbium-doped fiber amplifier (EDFA) is used as a photoacoustic excitation light source. To improve the sensitivity, the photoacoustic signal is enhanced by a photoacoustic cell with a resonant frequency of 1624 Hz. When the wavelength modulation spectroscopy (WMS) technique is applied, the weak photoacoustic signal is detected by the second-harmonic detection technique. Trace NH3 measurement experiments demonstrate that the designed fiber-optic CEPAS system has a linear response to concentrations in the range of 0 ppm – 20 ppm at the wavelength of 1522.448 nm. Moreover, the detection limit is estimated to be 3.2 ppb for a lock-in integration time of 30 s.

Keywords

Trace gas detection / photoacoustic spectroscopy / cantilever microphone / fiber-optic Fabry-Perot interferometer / near-infrared laser

Cite this article

Download citation ▾
Min Guo, Ke Chen, Zhenfeng Gong, Qingxu Yu. Trace Ammonia Detection Based on Near-Infrared Fiber-Optic Cantilever-Enhanced Photoacoustic Spectroscopy. Photonic Sensors, 2018, 9(4): 293-301 DOI:10.1007/s13320-019-0545-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Niu X F, Zhong Y B, Chen R, Wang F, Luo D. Highly sensitive and selective liquid crystal optical sensor for detection of ammonia. Optics Express, 2017, 25(12): 13549-13556.

[2]

Thorpe M J, David B C, Kirchner M S, Ye J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Optics Express, 2008, 16(4): 2387-2397.

[3]

Pisco M, Consales M, Campopiano S, Viter R, Smyntyna V, Giordano M, . A novel optochemical sensor based on SnO2 sensitive thin film for ppm ammonia detection in liquid environment. Journal of Lightwave Technology, 2006, 24(12): 5000-5007.

[4]

Dong L, Wright J, Peters B, Ferguson B A, Tittel F K, Whorter S M. Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen. Applied Physics B, 2012, 107(2): 459-467.

[5]

Wang Q, Wang Z, Ren W. Theoretical and experimental investigation of fiber-ring laser intracavity photoacoustic spectroscopy (FLI-PAS) for acetylene detection. Journal of Lightwave Technology, 2006, 35(20): 4519-4525.

[6]

Wang J W, Zhang W, Li L, Yu Q. Breath ammonia detection based on tunable fiber laser photoacoustic spectroscopy. Applied Physics B, 2011, 103(2): 263-269.

[7]

Chen K, Gong Z F, Yu Q X. Fiber-amplifier-enhanced resonant photoacoustic sensor for sub-ppb level acetylene detection. Sensors and Actuators A: Physical, 2018, 274, 184-188.

[8]

Webber M E, Pushkarsky M, Patel C K. Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers. Applied Optics, 2003, 42(12): 2119-2126.

[9]

Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F. Quartz-enhanced photoacoustic spectroscopy. Optics Letters, 2002, 27(21): 1902-1904.

[10]

Guo L K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M. Off-beam quartz-enhanced photoacoustic spectroscopy. Optics Letters, 2009, 34(10): 1594-1596.

[11]

Borri S, Patimisco P, Galli I, Mazzotti D, Giusfredi G, Akikusa N, . Intracavity quartz-enhanced photoacoustic sensor. Applied Physics Letters, 2014, 104(9): 091114-1-091114-4.

[12]

Cao Y C, Jin W, Ho H L, Ma J. Miniature fiber-tip photoacoustic spectrometer for trace gas detection. Optics Letters, 2013, 38(4): 434-436.

[13]

Mao X F, Zhou X L, Gong Z F, Yu Q X. An all-optical photoacoustic spectrometer for multi-gas analysis. Sensors and Actuators B: Chemical, 2016, 232, 251-256.

[14]

Tan Y Z, Zhang C Z, Jin W, Yang F, Ho H L, Ma J. Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2): 199-209.

[15]

Gong Z F, Chen K, Yang Y, Zhou X L, Peng W, Yu Q X. High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection. Sensors and Actuators B: Chemical, 2017, 247, 290-295.

[16]

Koskinen V, Fonsen J, Roth K, Kauppinen J. Progress in cantilever enhanced photoacoustic spectroscopy. Vibrational Spectroscopy, 2008, 48(1): 16-21.

[17]

Peltola J, Hieta T, Vainio M. Parts-per-trillion-level detection of nitrogen dioxide by cantilever-enhanced photo-acoustic spectroscopy. Optics Letters, 2015, 40(13): 2933-2936.

[18]

Moser H, Lendl B. Cantilever-enhanced photoacoustic detection of hydrogen sulfide (H2S) using NIR telecom laser sources near 1.6 μm. Applied Physics B, 2016, 122(4): 83-1-83-11.

[19]

Wu H P, Dong L, Liu X L, Zheng H D, Yin X K, Ma W G, . Fiber-amplifier-enhanced QEPAS sensor for simultaneous trace gas detection of NH3 and H2S. Sensors, 2015, 15(10): 26743-26755.

[20]

Ma Y F, He Y, Tong Y, Yu X, Tittel F K. Ppb-level detection of ammonia based on QEPAS using a power amplified laser and a low resonance frequency quartz tuning fork. Optics Express, 2017, 25(23): 29356-29364.

[21]

Kauppinen J, Wilcken K, Kauppinen I, Koskinen V. High sensitivity in gas analysis with photoacoustic detection. Microchemical Journal, 2004, 76(1): 151-159.

[22]

Yu Q X, Zhou X L. Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer. Photonic Sensors, 2011, 1(1): 72-83.

[23]

Chen K, Zhou X L, Yang B K, Peng W, Yu Q X. A hybrid fiber-optic sensing system for down-hole pressure and distributed temperature measurements. Optics & Laser Technology, 2015, 35, 82-87.

[24]

Mao X F, Zhou X L, Yu Q X. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors. Optics Communications, 2016, 361, 17-20.

[25]

Mao X F, Yuan S Z, Zheng P C, Zheng P C. Stabilized fiber-optic Fabry.Perot acoustic sensor based on improved wavelength tuning technique. Journal of Lightwave Technology, 2017, 73(11): 2311-2314.

[26]

Hippler M, Mohr C, Keen K A, Naghten E D M. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: a novel technique for ultratrace gas analysis and high-resolution spectroscopy. The Journal of Chemical Physics, 2010, 133(4): 289-297.

[27]

Boschetti A, Bassi D, Iacob E, Iannaotta S. Resonant photoacoustic simultaneous detection of methane and ethylene by means. of a 1.63-μm diode laser. Applied Physics B, 2002, 74(3): 273-278.

[28]

Wang J W, Zhang W, Liang L R, Yu Q X. Tunable fiber laser based photoacoustic spectrometer for multi-gas analysis. Sensors and Actuators B: Chemical, 2011, 160(1): 1268-1272.

[29]

Chen K, Yu Q X, Gong Z F, Guo M, Qu C. Ultra-high sensitive fiber-optic Fabry-Perot cantilever enhanced resonant photoacoustic spectroscopy. Sensors and Actuators B: Chemical, 2018, 268, 205-209.

[30]

Chen K, Yu Z H, Gong Z F, Yu Q X. Lock-in white-light-interferometry-based all-optical photoacoustic spectrometer. Optics Letters, 2018, 43(20): 5038-5041.

[31]

Viveiros D, Ferreira J, Silva S O, Ribero J, Flores D, Santos J L, . Ammonia sensing system based on wavelength modulation spectroscopy. Photonic Sensors, 2015, 5(2): 109-115.

[32]

Chen K, Gong Z F, Guo M, Yu S C, Qu C, Zhou X L, . Fiber-optic Fabry-Perot interferometer based high sensitive cantilever microphone. Sensors and Actuators A: Physical, 2018, 279, 107-112.

[33]

Chen K, Yu Z H, Yu Q X, Guo M, Zhao Z H, Qu C, . Fast demodulated white-light interferometry-based fiber-optic Fabry-Perot cantilever microphone. Optics Letters, 2018, 43(14): 3417-3420.

[34]

Yu Z H, Wang A B. Fast white light interferometry demodulation algorithm for low-finesse Fabry-Perot sensors. IEEE Photonics Technology Letters, 2015, 27(8): 817-820.

[35]

Gong Z F, Chen K, Zhou X L, Yang Y, Zhao Z H, Zou H L, . High-sensitivity Fabry-Perot interferometric acoustic sensor for low-frequency acoustic pressure detections. Journal of Lightwave Technology, 2017, 35(24): 5276-5279.

[36]

Zhou S, Slaman M, Iannuzzi D. Demonstration of a highly sensitive photoacoustic spectrometer based on a miniaturized all-optical detecting sensor. Optics Express, 2017, 25(15): 17541-17548.

[37]

Wu H P, Dong L, Zheng H D, Yu Y J, Ma W G, Zhang L, . Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring. Nature Communications, 2017, 8, 15331-1-15331-8.

[38]

Adamson B D, Sader J E, Bieske E J. Photoacoustic detection of gases using microcantilevers. Journal of Applied Physics, 2009, 106, 114510-1-114510-4.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/