Modeling of Refractive Index Sensing Using Au Aperture Arrays on a Bragg Fiber Facet

Gongli Xiao , Hongyan Yang

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (4) : 337 -343.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (4) : 337 -343. DOI: 10.1007/s13320-019-0542-0
Regular

Modeling of Refractive Index Sensing Using Au Aperture Arrays on a Bragg Fiber Facet

Author information +
History +
PDF

Abstract

A finite-difference-time-domain (FDTD) approach is undertaken to investigate the extraordinary optical transmission (EOT) phenomenon of Au circular aperture arrays deposited on a Bragg fiber facet for refractive index (RI) sensing. Investigation shows that the choice of effective indices and modal loss of the Bragg fiber core modes will affect the sensitivity enhancement by using a mode analysis approach. The critical parameters of Bragg fiber including the middle dielectric RI, as well as its gap between dielectric layers, which affect the EOT and RI sensitivity for the sensor, are discussed and optimized. It is demonstrated that a better sensitivity of 156 ± 5 nm per refractive index unit (RIU) and an averaged figure of merit exceeding 3.5 RIU−1 are achieved when RI is 1.5 and gap is 0.02 μm in this structure.

Keywords

Optical fiber sensors / surface plasmon resonance / periodic array / refractive index sensing / finite-difference time-domain

Cite this article

Download citation ▾
Gongli Xiao, Hongyan Yang. Modeling of Refractive Index Sensing Using Au Aperture Arrays on a Bragg Fiber Facet. Photonic Sensors, 2018, 9(4): 337-343 DOI:10.1007/s13320-019-0542-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Karlsson R.. SPR for molecular interaction analysis: a review of emerging application areas. Journal of Molecular Recognition, 2004, 17(3): 151-161.

[2]

Chen J., Zhang Q., Peng C., Tang C. J., Shen X. Y., Deng L. C., . Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing. IEEE Photonics Technology Letters, 2018, 30(8): 728-731.

[3]

Chen J., Fan W. F., Zhang T., Tang C. J., Chen X. Y., Wu J. J., . Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing. Optics Express, 2017, 25(4): 3675-3681.

[4]

Chen J., Yuan J., Zhang Q., Ge H. M., Tang C. J., Liu Y., . Dielectric waveguide-enhanced localized surface plasmon resonance refractive index sensing. Optical Materials Express, 2018, 8(2): 342-347.

[5]

Chen J., Nie H., Peng C., Qi S. B., Tang C. J., Zhang Y., . Enhancing the magnetic plasmon resonance of three-dimensional optical metamaterials via strong coupling for high-sensitivity sensing. Journal of Lightwave Technology, 2018, 36(16): 3481-3485.

[6]

Ebbesen T. W., Lezec H., Ghaemi H. F., Thio T., Wolff P. A.. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998, 391(6668): 667-669.

[7]

Gordon R., Sinton D., Kavanagh L. K., Brolo A. G.. A new generation of sensors based on extraordinary optical transmission. Accounts of Chemical Research, 2008, 41(8): 1049-1057.

[8]

Zhou H. C., Chen X., Hou P., Li C. F.. Giant bistable lateral shift owing to surface-plasmon excitation in Kretschmann configuration with a Kerr nonlinear dielectric. Optics Letters, 2008, 33(11): 1249-1251.

[9]

Hsu J. C., Jeng S. W., Sun Y. S.. Simulation and experiments for optimizing the sensitivity of curved D-type optical fiber sensor with a wide dynamic range. Optics Communications, 2015, 341, 210-217.

[10]

Shuai B. B., Xia L., Zhang Y. T., Liu D. M.. A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Optics Express, 2012, 20(6): 5974-5986.

[11]

Jia P. P., Yang J.. Integration of large-area metallic nanohole arrays with multimode optical fibers for surface plasmon resonance sensing. Applied Physics Letters, 2013, 102(24): 243107-1.

[12]

Jia P. P., Jun Y.. A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing. Nanoscale, 2014, 6(15): 8836-8843.

[13]

Jia P. P., Yang Z. L., Yang J., Heike E. H.. Quasiperiodic nanohole arrays on optical fibers as plasmonic sensors: fabrication and sensitivity determination. ACS Sensors, 2016, 1(8): 1078-1083.

[14]

Jia P. P., Jiang H., Sabarinathan J., Yang J.. Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance. Nanotechnology, 2013, 24(19): 195501.

[15]

Jia P. P., Yang J.. Universal sensitivity of propagating surface plasmon resonance in nanostructure arrays. Optics Express, 2015, 23(14): 18658-18664.

[16]

Zhao E. M., Jia P. P., Heike E. H., Li H. Y.. Localized surface plasmon resonance sensing structure based on gold nanohole array on beveled fiber edge. Nanotechnology, 2017, 28(43): 435504.

[17]

Lumerical Solutions Inc., FDTD Solutions User Manual, Vancouver, BC, Canada, 2011.

[18]

Liu C., Yang L., Lu X. L., Liu Q.. Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Optics Express, 2017, 25(13): 14227-14237.

[19]

Johnson P. B., Christy R. W.. Optical constants of the noble metals. Physical Review B, 1972, 6(12): 4370-4379.

[20]

Rifat A. A., Mahdiraji G. A., Sua Y. M., Ahmed R., Shee Y. G., Adikan F. R. M.. Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Optics Express, 2016, 24(3): 2485-2495.

[21]

Elshorbagy M. H., Alexander C., Javier A.. High-sensitivity integrated devices based on surface plasmon resonance for sensing applications. Photonics Research, 2017, 5(6): 654-661.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/