Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode

Xuejing Liu , Yang Li , Hongwei Cai , Ming Ding , Jiancheng Fang , Wei Jin

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (2) : 135 -141.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (2) : 135 -141. DOI: 10.1007/s13320-019-0539-8
Regular

Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode

Author information +
History +
PDF

Abstract

A superluminescent diode (SLD) as an alternative of laser is used to detect optical rotation for atomic spin precession. A more uniform Gauss configuration without additional beam shaping and a relatively high power of the SLD have a potential for atomic magnetometers, which is demonstrated in theory and experiments. In addition, the robustness and compactness enable a more practical way for optical rotation detections, especially for applications in magnetoencephalography systems.

Keywords

Superluminescent diode / atomic magnetometer / magnetoencephalography / atomic spin precession detection / Larmor precession

Cite this article

Download citation ▾
Xuejing Liu, Yang Li, Hongwei Cai, Ming Ding, Jiancheng Fang, Wei Jin. Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode. Photonic Sensors, 2018, 9(2): 135-141 DOI:10.1007/s13320-019-0539-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Happer W, Mathur B S. “Off-resonant light as a probe of optically pumped alkali vapors,”. Physical Review Letters, 1967, 18(15): 577-580.

[2]

Dang H B, Maloof A C, Romalis M V. “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,”. Applied Physics Letters, 2010, 97(15): 151110-1-151110-4.

[3]

Cohen D. “Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer,”. Science, 1972, 175(4022): 664-666.

[4]

Budker D. “Atomic physics-A new spin on magnetometry,”. Nature, 2003, 422(6932): 574-575.

[5]

Xia H, Baranga A B A, Hoffman D, Romalis M V. “Magnetoencephalography with an atomic magnetometer,”. Applied Physics Letters, 2006, 75(21): 211104-1-211104-3.

[6]

Wyllie R, Kauer M, Smetana G S, Wakai R T, Walker T G. “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,”. Physics in Medicine and Biology, 2012, 57(9): 2619-2632.

[7]

Boto E, Holmes N, Leggett J, Roberts G, Shah V K, Meyer S S, . “Moving magnetoencephalography towards real-world applications with a wearable system,”. Nature, 2018, 555(7698): 657-661.

[8]

Sander T, Preusser J, Mhaskar R R, Kitching J, Trahms L, Knappe S. “Magnetoencephalography with a chip-scale atomic magnetometer,”. Biomedical Optics Express, 2012, 3(5): 981-990.

[9]

Borna A, Carter T R, Derego P, James C D, Schwindt P D D. “Magnetic source imaging using a pulsed optically pumped magnetometer array,”. IEEE Transactions on Instrumentation and Measurement, 2018, 68(2): 493-501.

[10]

Weis A. “Optically pumped alkali magnetometers for biomedical applications,”. Europhysics News, 2012, 43(3): 20-23.

[11]

Johnson C, Adolphi N L, Butler K L, Lovato D M, Larson R, Schwindt P D D, . “Magnetic relaxometry with an atomic magnetometer and SQUID sensors on targeted cancer cells,”. Journal of Magnetism and Magnetic Materials, 2012, 324(17): 2613-2619.

[12]

Weis A, Colombo S, Dolgovskiy V, Grujic Z D, Lebedev V N, Zhang J. “Characterizing and imaging magnetic nanoparticles by optical magnetometry,”. Journal of Physics Conference Series, 2017, 793(1): 012032-1-012032-4.

[13]

Bison G, Castagna N, Hofer A, Knowles P, Schenker J L, Kasprzak M, . “A room temperature 19-channel magnetic field mapping device for cardiac signals,”. Applied Physics Letters, 2009, 95(17): 173701-1-173701-3.

[14]

Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, . “Moving magnetoencephalography towards real-world applications with a wearable system,”. Nature, 2018, 555(7698): 657-661.

[15]

Johnson C, Schwindt P D D, Weisend M. “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,”. Applied Physics Letters, 2010, 97(24): 413-375.

[16]

Wyllie R, Kauer M, Smetana G S, Wakai R T, Walker T G. “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,”. Physics in Medicine and Biology, 2012, 57(9): 2619-2132.

[17]

Borna A, Carter T R, Goldberg J D, Colombo A P, Jau Y, Berry C, . “A 20-channel magnetoencephalography system based on optically pumped magnetometers,”. Physics in Medicine and Biology, 2017, 62(23): 8909-8923.

[18]

Shibata N, Ohashi M, Wakabayashi T, Tsuchiya K, Furukawa S I, Mizuguchi H, . “Polarization mode coupling and spatial power spectrum of fluctuations along a highly birefringent holey fiber,”. Journal of Lightwave Technology, 2009, 27(10): 1269-1278.

[19]

Kuksenkov D V, Temkin H, Swirhun S. “Polarization instability and relative intensity noise in vertical-cavity surface-emitting lasers,”. Applied Physics Letters, 1995, 67(15): 2141-2143.

[20]

Choquette K D, Schneider R P, Lear K L, Leibenguth R E. “Gain-dependent polarization properties of vertical-cavity lasers,”. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(2): 661-666.

[21]

Camparo J C, MacKay R. “Spectral mode changes in an alkali rf discharge,”. Journal of Applied Physics, 2007, 101(5): 53303-1-53303-6.

[22]

Dandridge A, Tveten A B. “Noise reduction in fiber-optic interferometer systems,”. Applied Optics, 1981, 20(14): 2337-2339.

[23]

Komljenovic T, Tran M A, Belt M, Gundavarapu S, Blumenthal D J, Bowers J E. “Frequency modulated lasers for interferometric optical gyroscopes,”. Optics Letters, 2016, 41(8): 1773-1776.

[24]

Müller G M, Gu X, Yang L, Frank A, Bohnert K. “Inherent temperature compensation of fiber-optic current sensors employing spun highly birefringent fiber,”. Optics Express, 2016, 24(10): 11164-11173.

[25]

Bohnert K, Gabus P, Nehring J, Brändle H, Brunzel M G. “Fiber-optic current sensor for electrowinning of metals,”. Journal of Lightwave Technology, 2007, 25(11): 3602-3609.

[26]

Ledbetter M P, Savukov I M, Acosta V M, Budker D, Romalis M. “Spin-exchange-relaxation-free magnetometry with Cs vapor,”. Physical Review A, 2008, 77(3): 033408-1-033408-8.

[27]

Seltzer S J. “Developments in alkali-metal atomic magnetometry,”. Ph.D. dissertation, 2008, Princeton, New Jersey, USA: Princeton University

[28]

Romalis M V. “Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas,”. Physical Review Letters, 2010, 105(24): 243001-1-243001-4.

[29]

Fang J C, Wang T, Quan W, Yuan H, Zhang H, Li Y, . “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,”. Review of Scientific Instruments, 2014, 85(6): 63108-1-063108-7.

[30]

Vasilakis G, Brown J M, Kornack T W, Romalis M. “Limits on new long range nuclear spin-dependent forces set with a K-3He comagnetometer,”. Physical Review Letters, 2009, 103(26): 261801-1-261801-4.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/