A High-Sensitivity and Broad-Range SPR Glucose Sensor Based on Improved Glucose Sensitive Membranes

Yinquan Yuan , Na Yuan , Dejing Gong , Minghong Yang

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (4) : 309 -316.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (4) : 309 -316. DOI: 10.1007/s13320-019-0538-9
Regular

A High-Sensitivity and Broad-Range SPR Glucose Sensor Based on Improved Glucose Sensitive Membranes

Author information +
History +
PDF

Abstract

An improved glucose sensitive membrane (GSM) is prepared by immobilizing glucose oxidase (GOD) onto a mixture of silica mesocellular foams (SiMCFs) and SiO2 nanoparticles (SiNPs) and then trapping it in a polyvinyl alcohol (PVA) gel. The membrane is coated onto a gold-glass sheet to create a surface plasmon resonance (SPR) sensor. A series of experiments are conducted to determine the optimized parameters of the proposed GSM. For a GSM with a component ratio of SiMCFs: SiNPs = 7: 3 (mass rate), the resonance angle of the sensor decreases from 68.57° to 63.36°, and the average sensitivity is 0.026°/(mg/dL) in a glucose concentration range of 0 mg/dL‒200 mg/dL. For a GSM with a component ratio of SiMCFs: SiNPs = 5: 5 (mass rate), the resonance angle of the sensor decreases from 67.93° to 63.50°, and the sensitivity is 0.028°/(mg/dL) in a glucose concentration range of 0 mg/dL‒160 mg/dL. These data suggest that the sensor proposed in this study is more sensitive and has a broader measurement range compared with those reported in the literature to date.

Keywords

Surface plasmon resonance sensor / glucose sensitive membrane / immobilized enzyme / silica mesocellular foams

Cite this article

Download citation ▾
Yinquan Yuan, Na Yuan, Dejing Gong, Minghong Yang. A High-Sensitivity and Broad-Range SPR Glucose Sensor Based on Improved Glucose Sensitive Membranes. Photonic Sensors, 2018, 9(4): 309-316 DOI:10.1007/s13320-019-0538-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luo B. B., Yan Z. J., Sun Z. Y., Liu Y., Zhao M. F., Zhang L.. Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration. Optics Express, 2015, 23(25): 32429-32440.

[2]

Deep A., Tiwari U., Kumar P., Mishra V., Jain S. C., Singh N., . Immobilization of enzyme on long period grating fibers for sensitive glucose detection. Biosensors and Bioelectronics, 2012, 33(1): 190-195.

[3]

Lam W. W., Chu L. H., Wong C. L., Zhang Y. T.. A surface plasmon resonance system for the measurement of glucose in aqueous solution. Sensors and Actuators B: Chemical, 2005, 105(2): 138-143.

[4]

Li D., Yang D., Yang J., Lin Y., Sun Y. J., Yu H. X., . Glucose affinity measurement by surface plasmon resonance with borate polymer binding. Sensors and Actuators A: Physical, 2015, 222, 58-66.

[5]

Yang X., Yuan Y. Q., Dai Z. C., Liu F., Huang J.. Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor. Sensors and Actuators B: Chemical, 2016, 237, 150-168.

[6]

Li Y. Y., Yuan Y. Q., Gong D. J., Hu W. B., Yang M. H.. A SPR glucose sensor based on immobilized glucose oxidases and silica mesocellular foams. IEEE Sensors Journal, 2018, 18, 2229-2235.

[7]

Singh S., Gupta B. D.. Fabrication and characterization of a surface plasmon resonance based fiber optic sensor using gel entrapment technique for the detection of low glucose concentration. Sensors and Actuators B: Chemical, 2013, 177, 589-595.

[8]

Li D. C., Wu J. W., Wu P., Lin Y., Sun Y. J., Zhu R., . Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer. Sensors and Actuators B: Chemical, 2015, 213, 295-304.

[9]

Yuan Y. Q., Yang X., Gong D. J., Liu F., Hu W. B., Cai W. Q., . Investigation for terminal reflection optical fiber SPR glucose sensor and glucose sensitive membrane with immobilized GODs. Optics Express, 2017, 25(4): 3884-3898.

[10]

Khan A. Y., Noronha S. B., Bandyopadhyaya R.. Glucose oxidase enzyme immobilized porous silica for improved performance of a glucose biosensor. Biochemical Engineering Journal, 2014, 91, 78-85.

[11]

Ikemoto H., Chi Q. J., Ulstrup J.. Stability and catalytic kinetics of horseradish peroxidase confined in nanoporous SBA-15. The Journal of Physical Chemistry C, 2010, 114, 1840-1846.

[12]

Ferreira M., Fiorito P. A., Oliveira O. N. Jr, de Torresi S. I. C.. Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique. Biosensors and Bioelectronics, 2004, 19(12): 1611-1615.

[13]

Livage J., Coradin T., Roux C.. Encapsulation of biomolecules in silica gels. Journal of Physics Condensed Matter, 2001, 13(33): R673-R691.

[14]

Usha S. P., Shrivastav A. M., Gupta B. D.. FO-SPR based dextrose sensor using Ag/ZnO nanorods/GOx for insulinoma detection. Biosensors and Bioelectronics, 2016, 85, 986-995.

[15]

Huang J., Wang H., Li D. P., Zhao W. Q., Ding L. Y., Han Y.. A new immobilized glucose oxidase using SiO2 nanoparticles as carrier. Materials Science and Engineering: C, 2011, 31(7): 1374-1378.

[16]

Balistreri N., Gaboriaua D., Jolivalt C., Launay F.. Covalent immobilization of glucose oxidase on mesocellular silica foams: characterization and stability towards temperature and organic solvents. Journal of Molecular Catalysis B: Enzymatic, 2016, 127, 26-33.

[17]

Hartmann M., Jung D.. Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends. Journal of Materials Chemistry, 2010, 20(5): 844-857.

[18]

Zlateski V., Keller T. C., Ramirez J. P., Grass R. N.. Immobilizing and de-immobilizing enzymes on mesoporous silica. RSC Advances, 2015, 5(106): 87706-87712.

[19]

Singh S., Mishra S. K., Gupta B. D.. SPR based fibre biosensor for phenolic compounds using immobilization of tyrosinase in polyacrylamide gel. Sensors and Actuators B: Chemical, 2013, 186, 388-395.

[20]

Li S. Q., Davis E. N., Anderson J., Lin Q., Wang Q.. Development of boronic acid grafted random copolymer sensing fluid for continuous glucose monitoring. Biomacromolecules, 2008, 10(1): 113-118.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/