Piecewise Linear Weighted Iterative Algorithm for Beam Alignment in Scanning Beam Interference Lithography

Ying Song , Bayanheshig , Shuo Li , Shan Jiang , Wei Wang

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (4) : 344 -355.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (4) : 344 -355. DOI: 10.1007/s13320-019-0537-x
Regular

Piecewise Linear Weighted Iterative Algorithm for Beam Alignment in Scanning Beam Interference Lithography

Author information +
History +
PDF

Abstract

To obtain a good interference fringe contrast and high fidelity, an automated beam iterative alignment is achieved in scanning beam interference lithography (SBIL). To solve the problem of alignment failure caused by a large beam angle (or position) overshoot exceeding the detector range while also speeding up the convergence, a weighted iterative algorithm using a weight parameter that is changed linearly piecewise is proposed. The changes in the beam angle and position deviation during the alignment process based on different iterative algorithms are compared by experiment and simulation. The results show that the proposed iterative algorithm can be used to suppress the beam angle (or position) overshoot, avoiding alignment failure caused by over-ranging. In addition, the convergence speed can be effectively increased. The algorithm proposed can optimize the beam alignment process in SBIL.

Keywords

Piecewise linear weighted iterative algorithm / beam alignment / scanning beam interference lithography (SBIL) / overshoot suppression / convergence speed

Cite this article

Download citation ▾
Ying Song, Bayanheshig, Shuo Li, Shan Jiang, Wei Wang. Piecewise Linear Weighted Iterative Algorithm for Beam Alignment in Scanning Beam Interference Lithography. Photonic Sensors, 2018, 9(4): 344-355 DOI:10.1007/s13320-019-0537-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Elmahdy N. A., Esmail M. S., El-Okr M. M.. Characterization of a thermal sensor based on one-dimensional photonic crystal with central liquid crystal defect. Optik, 2018, 170, 444-451.

[2]

Tseng K. C., Hong S. T., Lin T. H., Chuang T. H., Fu C. C.. WGP^structures patterned by Lloyd′s mirror laser interference lithography system integrate into MEMS physical sensor device. SPIE, 2016, 9759, 97591.

[3]

Gupta M. C., Ungaro C., Foler IV J. J., Gray S. K.. Optical nanostructures design, fabrication, and application for solar/thermal energy conversion. Solar Energy, 2018, 165, 100-114.

[4]

Lee K., Lee J., Mazor B. A., Forrest S. R.. Transforming the cost of solar-to-electrical energy conversion: integrating thin-film GaAs solar cells with non-tracking mini-concentrators. Light:^Science & Applications, 2015

[5]

Shuty A. M., Eliseeva S. V., Sementsov D. I.. Dynamics of the magnetic nanoparticles lattice in an external magnetic field. Journal of Magnetism and Magnetic Materials, 2018, 464, 76-90.

[6]

Gu M., Li X. P., Gao Y. Y.. Optical storage arrays: a perspective for future big data storage. Light:^Science & Applications, 2014

[7]

Yuan J., Xie Y. Y., Geng Z. X., Wang C. X., Chen H. M., Kan Q., . Enhanced sensitivity of gold elliptic nanohole array biosensor with the surface plasmon polaritons coupling. Optical Materials Express, 2015, 5(4): 818-826.

[8]

Li Q. S., Cai L., Ma Y. H., Yang J. H., Yang Y., Meng Q. J., . Research progress of biosensors based on long period fiber grating. Chinese Optics, 2018, 11(3): 476-502.

[9]

Liu C. H., Hong M. H., Lum M. C., Flotow H., Ghadessy F., Zhang J. B.. Large-area micro/nanostructures fabrication in quartz by laser interference lithography and dry etching. Applied Physics A, 2010, 101(2): 237-241.

[10]

Retolaza A., Juarros A., Ramiro J., Merino S.. Thermal roll to roll nanoimprint lithography for micro pillars fabrication on thermoplastics. Microelectronic Engineering, 2018, 193, 54-61.

[11]

Kanamori Y., Okochi M., Hane K.. Fabrication of antireflection subwavelength grating at tips of optical fibers using UV^nanoimprint lithography. Optics Express, 2013, 21(1): 322-328.

[12]

Chen Y. F.. Nanofabrication by electron beam lithography and its application: a review. Microeletronic Engineering, 2015, 135, 57-72.

[13]

Chiromawa N. L., Lbrahim K.. Fabrication of micro-array of Fresnel rings on Si by electron beam lithography and reactive ion etching. Applied Physics A, 2016, 122(2): 122-129.

[14]

Jim K. L., Leung C. W., Chan H. L. W.. Photonic crystal cavity embedded barium strontium titanate thin-film rib waveguide prepared by focused ion beam etching. Thin solid films, 2010

[15]

Liu J., Jia T., Zhou K., Feng D., Zhang S., Zhang H., . Direct writing of 150 nm gratings and squares on ZnO^crystal in water by using 800 nm femtosecond laser. Optics Express, 2014, 22(26): 32361-32370.

[16]

Jing S. M., Zhang X. Y., Liang J. F., Chen C., Zheng Z. M., Yu Y. S.. Ultrashort fiber Bragg grating written by femtosecond laser and its sensing characteristics. Chinese Optics, 2017, 10(4): 449-454.

[17]

Liu D. X., Xia H., Sun Y. L., Chen Q. D., Dong W. F.. Femtosecond laser direct writing bio-gel template for in situ synthesis of nanoparticles. Chinese Optics, 2014, 7(4): 608-615.

[18]

Montoya J.. Toward nano-accuracy in scanning beam interference lithography. Ph.D.^dissertation, Massachusetts Institute of Technology, Boston, USA, 2006

[19]

Wei W.. Study on beam quality control of the scanning beam interference lithography system. Ph.D.^dissertation, University of Chinese Academy of Sciences, Beijing, China, 2017

[20]

Konkola P. T., Chen C. G., Heilmann R. K., Schattenburg M. L.. Beam steering system and spatial filtering applied to interference lithography. Journal Vacuum Science & Technology B, 2000, 18(6): 3282-3286.

[21]

Chen C. G.. Beam alignment and image metrology for scanning beam interference lithography: fabricating gratings with nanometer phase accuracy. Ph.D.^dissertation, Massachusetts Institute of Technology, USA, 2003

[22]

Wang W., Song B. Y., Jiang S., Pan M. Z.. Beam alignment and convergence analysis of scanning beam interference lithography system. Chinese Journal of Lasers, 2016, 43(12): 176-183.

[23]

Kanai T., Suda A., Bohman S., Kaku M., Yamaguchi S., Midorikawa K.. Pointing stabilization of a high-repetition-rate high power femtosecond laser for intense few-cycle pulse generation. Applied Physics Letters, 2008, 92(6): 061106.

[24]

Stalmashonak A., Zhavoronkov N., Hertel I. V., Vetrov S., Schmid K.. Spatial control of femtosecond laser system output with submicroradian accuracy. Applied Optics, 2006, 45(6): 1271-1274.

[25]

Song Y., Wang W., Jiang S., Zhang N.. Weighted iterative algorithm for beam alignment in scanning beam interference lithography. Applied Optics, 2017, 56(31): 8669-8675.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/