High Sensitive Methane Sensor With Temperature Compensation Based on Selectively Liquid-Infiltrated Photonic Crystal Fibers

Hai Liu , Haoran Wang , Wen Zhang , Cancan Chen , Qing Wang , Yi Ding , Shoufeng Tang

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (3) : 213 -222.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (3) : 213 -222. DOI: 10.1007/s13320-019-0536-y
Regular

High Sensitive Methane Sensor With Temperature Compensation Based on Selectively Liquid-Infiltrated Photonic Crystal Fibers

Author information +
History +
PDF

Abstract

A highly sensitive and temperature-compensated methane sensor based on a liquid-infiltrated photonic crystal fiber (PCF) is proposed. Two bigger holes near the core area are coated with a methane-sensitive compound film, and specific cladding air holes are infiltrated into the liquid material to form new defective channels. The proposed sensor can achieve accurate measurement of methane concentration through temperature compensation. The sensitivity can reach to 20.07 nm/% with a high linearity as the methane concentration is within the range of 0%–3.5% by volume. The proposed methane sensor can not only improve the measurement accuracy, but also reduce the metrical difficulty and simplify the process.

Keywords

Photonic crystal fiber / methane sensor / directional resonance coupling / temperature compensation

Cite this article

Download citation ▾
Hai Liu, Haoran Wang, Wen Zhang, Cancan Chen, Qing Wang, Yi Ding, Shoufeng Tang. High Sensitive Methane Sensor With Temperature Compensation Based on Selectively Liquid-Infiltrated Photonic Crystal Fibers. Photonic Sensors, 2018, 9(3): 213-222 DOI:10.1007/s13320-019-0536-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vera E. R., Cordeiro C. M. B., Torres P.. High sensitive temperature sensor using Sagnac loop interferometer based on side-hole photonic crystal fiber filled with metal. Applied Optics, 2017, 56(2): 156-162.

[2]

Wang J. S., Pei L., Weng S. J., Wu L. Y., Huang L., Ning T. G., . A^tunable polarization beam splitter based on magnetic fluids-filled dual-core photonic crystal fiber. IEEE Photonics Journal, 2017, 9(1): 1-10.

[3]

Rifat A. A., Mahdiraji G. A., Ahmed R., Chow D. M., Sua Y. M., Shee Y. G., . Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE^Photonics Journal, 2017, 8(1): 4800408.

[4]

Shi M., Li S. G., Chen H. L.. A^high-sensitivity temperature sensor based on Sagnac interferometer employing photonic crystal fiber fully filled with ethanol. Applied Physics B, 2018, 124(6): 94.

[5]

Liu Q., Li S. G., Chen H.. Enhanced sensitivity of temperature sensor by a PCF^with a defect core based on Sagnac interferometer. Sensors & Actuators B Chemical, 2018, 254, 636-641.

[6]

Zhu G. Q., Li X. M., Tao C. Y., Huang J., Yang J. C.. Optical fiber methane sensor based on SAN^film containing cryptophane-E-(OEt)_6. Chinese Optics Letters, 2012, 10(10): 100601.

[7]

Yang J. C., Che X., Shen R., Wang C., Li X. M., Chen W. M.. High-sensitivity photonic crystal fiber long-period grating methane sensor with cryptophane-A-6Me absorbed on a PAA-CNTs/PAH^nanofilm. Optics Express, 2017, 25(17): 20258-20267.

[8]

Yang J. C., Zhou L., Huang J., Tao C. Y., Li X. M., Chen W. M.. Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A^overlay deposition. Sensors & Actuators B: Chemical, 2015, 207, 477-480.

[9]

Yang J. C., Zhou L., Che X., Huang J., Li X. M., Chen W. M.. Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A. Sensors & Actuators B: Chemical, 2016, 235, 717-722.

[10]

Liu H., Wang M., Wang Q., Li H. W., Ding Y., Zhu C. H.. Simultaneous measurement of hydrogen and methane based on PCF-SPR^structure with compound film-coated side-holes. Optical Fiber Technology, 2018, 45, 1-7.

[11]

Zhang Y. N., Zhao Y., Wang Q.. Measurement of methane concentration with cryptophane E^infiltrated photonic crystal microcavity. Sensors & Actuators B Chemical, 2015, 209(209): 431-437.

[12]

Wu Z. F., Zheng C. T., Liu Z. W., Yao D., Zhang W. X., Wang Y. D., . Investigation of a slow-light enhanced near-infrared absorption spectroscopic Gas sensor, based on hollow-core photonic band-gap fiber. Sensors, 2018, 18(7): 2192.

[13]

Wang C., Yang J. C., Shen R., Li X. M., Chen W. M.. High-sensitivity photonic crystal fiber long-period grating methane sensor with cryptophane-A-6Me absorbed on a PAA-CNTs/PAH^nanofilm. Optics Express, 2017, 25(17): 20258-20267.

[14]

Islam M. I., Paul B. K., Ahmed K., Hasan M. R., Chowdhury S., Islam M. S., . Highly birefringent single mode spiral shape photonic crystal fiber based sensor for gas sensing applications. Sensing and Bio-Sensing Research, 2017 30-38.

[15]

Yan G. F., Zhang L., He S. L.. Simultaneous measurement of magnetic field and temperature based on an etched TCFMI^cascaded with an FBG. Optics Communications, 2016, 364(2): 150-157.

[16]

Wu J. X., Miao Y. P., Song B. B., Lin W., Zhang K. L., Zhang H., . Simultaneous measurement of displacement and temperature based on thin-core fiber modal interferometer. Optics Communications, 2015, 340, 136-140.

[17]

Liu S. H., Wang Z., Hou M. X., Tian J., Xia J. J.. Asymmetrically infiltrated twin core photonic crystal fiber for dual-parameter sensing. Optics & Laser Technology, 2016, 82, 53-56.

[18]

Zhao Y., Wu D., Lv R. Q., Ying Y.. Tunable characteristics and mechanism analysis of the magnetic fluid refractive index with applied magnetic field. IEEE^Transactions on Magnetics, 2014, 50(8): 1-5.

[19]

Saitoh K., Koshiba M.. Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE^Journal of Quantum Electronics, 2002, 38(7): 927-933.

[20]

Cho T. Y., Kim G. H., Lee K. I., Lee S. B., Jeong J. M.. Study on the fabrication process of polarization maintaining photonic crystal fibers and their optical properties. Journal of the Optical Society of Korea, 2008 19-24.

[21]

Ma J., Yu H. H., Jiang X., Jiang D. S.. High-performance temperature sensing using a selectively filled solid-core photonic crystal fiber with a central air-bore. Optics Experss, 2017, 25(8): 9406-9415.

[22]

Yang J. C., Zhou L., Che X., Huang J., Li X. M., Chen W. M.. Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A. Sensors & Actuators B: Chemical, 2016, 235, 717-722.

[23]

Naeem K., Kwon I. B., Chung Y.. Multibeam interferometer using a photonic crystal fiber with two asymmetric cores for torsion, strain and temperature sensing. Sensors, 2017, 17(1): 132.

[24]

Jha R., Villatoro J., Badenes G.. Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing. Applied Physics Letters, 2008, 93(19): 4057.

[25]

Chen W. Q., Thoreson M. D., Ishii S., Kildishev A. V., Shalaev V. M.. Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. Optics Express, 2010, 18(5): 5124-5134.

[26]

Benounis M., Renault N. J., Dutasta J. P., Cherif K., Abdelghani A.. Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules. Sensors and Actuators B: Chemical, 2005, 107(1): 32-39.

[27]

Zhu G. Q., Li X. M., Tao C. Y., Huang J., Yang J. C.. Optical fiber methane sensor based on SAN^film containing, cryptophane-E-(OEt)6. Chinese Optics Letters, 2012, 10(10): 10-12.

[28]

Zhang Y. N., Zhao Y., Wang Q.. Measurement of methane concentration with cryptophane E^infiltrated photonic crystal microcavity. Sensors and Actuators B: Chemical, 2015, 209, 431-437.

[29]

Qian X. L., Zhao Y., Zhang Y. N., Wang Q.. Theoretical research of gas sensing method based on photonic crystal cavity and fiber loop ring-down technique. Sensors & Actuators B: Chemical, 2016, 228, 665-672.

[30]

Wu D. K. C., Lee K. J., Pureur V., Kuhlmey B. T.. Performance of refractive index sensors based on directional couplers in photonic crystal fibers. Journal of Lightwave Technology, 2013, 31(22): 3500-3510.

[31]

Varshney S. K., Saitoh K., Sinha R. K., Koshiba M.. Coupling characteristics of multicore photonic crystal fiber-based 1 × 4 power splitters. Journal of Lightwave Technology, 2009, 27(12): 2062-2068.

[32]

Liu Q., Li S. G., Chen H. L., Fan Z. K., Li J. S.. Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode. IEEE^Photonics Journal, 2015

[33]

Zhang Z. H., Shi Y. F., Bian B. M., Lu J.. Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding. Optics Express, 2008, 16(3): 1915-1922.

[34]

Shen B., Yang P. Q., Liu X. L., Zhang H. G., Cao S. W.. Fabrication and characterizations of SAW^methane sensor based on cryptophane-E membrane. Journal of Ambient Intelligence and Humanized Computing, 2018

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/