Manipulation of Coherent Optical Propagation Based on Monolayer MoS2 Resonator

Huajun Chen

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (4) : 317 -326.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (4) : 317 -326. DOI: 10.1007/s13320-019-0535-z
Regular

Manipulation of Coherent Optical Propagation Based on Monolayer MoS2 Resonator

Author information +
History +
PDF

Abstract

Atomically thin two-dimensional semiconductor nanomaterials have attained considerable attention currently. We here theoretically investigate the phenomena of slow and superluminal light based on the MoS2 resonator system driven by two-tone fields. Superluminal and ultraslow probe light without absorption can be obtained via manipulating the pump laser on- and off-resonant with the exciton frequency under different parameters regimes, respectively, of which the magnitude is larger than that in a carbon nanotube resonator. The bandwidth of the probe spectrum determined by the quality factor Q of MoS2 resonator is also presented. Furthermore, we also demonstrate the phenomenon of phonon induced transparency and show an optical transistor in the system. The all-optical device based on MoS2 resonator may indicate potential chip-scale applications in quantum information with the currently popular pump-probe technology.

Keywords

MoS2 / nanomechanical resonator / fast and slow light / optical transistor

Cite this article

Download citation ▾
Huajun Chen. Manipulation of Coherent Optical Propagation Based on Monolayer MoS2 Resonator. Photonic Sensors, 2018, 9(4): 317-326 DOI:10.1007/s13320-019-0535-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hau L. V., Harris S. E., Dutton Z., Behroozi C. H.. Light speed reduction to 17 metres persecond in an ultracold atomic gas. Nature, 1999, 397(6720): 594-598.

[2]

Boller K. J., Imamoglu A., Harris S. E.. Observation of electromagnetically induced transparency. Physical Review Letters, 1991, 66(20): 2593-2596.

[3]

Fleischhauer M., Imamoglu A., Marangos J. P.. Electromagnetically induced transparency: optics in coherent media. Review of Modem Physics, 2005, 77(2): 633-673.

[4]

Lukin M. D.. Trapping and manipulating photon states in atomic ensembles. Review of Modem Physics, 2003, 75(2): 457-472.

[5]

Wang L. J., Kuzmich A., Dogariu A.. gain-assisted superluminal light propagation. Nature, 2000, 406(6793): 277-279.

[6]

Bigelow M. S., Lepeshkin N. N., Boyd R. W.. Superluminal and slow light propagation in a room-temperature solid. Science, 2003, 301(5630): 200-202.

[7]

Ku P. C., Sedgwick F., Hasnain C. J. C., Palinginis P., Li T., Wang H., . Slow light in semiconductor quantum wells. Optics Letters, 2004, 29(19): 2291-2293.

[8]

Zhu Z., Gauthier D. J., Boyd R. W.. Stored light in an optical fiber via stimulated Brillouin scattering. Science, 2007, 318(5857): 1748-1750.

[9]

Residori S., Bortolozzo U., Huignard J. P.. Slow and fast light in liquid crystal light valves. Physical Review Letters, 2008, 100(20): 203603-1–203603–2.

[10]

Aspelmeyer M., Kippenberg T. J., Marquardt F.. Cavity optomechanics. Review of Modem Physics, 2014, 86(4): 1391-1455.

[11]

Abramovici A., Althouse W. E., Drever R. W., Gürsel Y., Kawamura S., Raab F. J., . LIGO: the laser interferometer gravitational-wave observatory. Science, 1992, 256(5055): 325-333.

[12]

Naik A., Buu O., LaHaye M. D., Armour A. D., Clerk A. A., Blencowe M. P., . Cooling a nanomechanical resonator with quantum back-action. Nature, 2006, 443(7108): 193-196.

[13]

Li J. J., Zhu K. D.. All-optical mass sensing with coupled mechanical resonator systems. Physics Reports, 2013, 525(3): 223-254.

[14]

Chen B., Jiang C., Zhu K. D.. Slow light in a cavity optomechanical system with a Bose-Einstein condensate. Physics Review A, 2011, 83(5): 055803-1–055803–4.

[15]

Naeini A. H. S., Alegre T. P., Chan J., Eichenfield M., Winger M., Lin Q., . Electromagnetically induced transparency and slow light with optomechanics. Nature, 2011, 472(7341): 69-73.

[16]

Ganatra R., Zhang Q.. Few-layer MoS2: a promising layered semiconductor. ACS Nano, 2014, 8(5): 4074-4099.

[17]

Mak K. F., Lee C., Hone J., Shan J., Heinz T. F.. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, 105(13): 136805-1–136805–4.

[18]

He K., Poole C., Mak K. F., Shan J.. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Letters, 2013, 13(6): 2931-2936.

[19]

Eda G., Yamaguchi H., Voiry D., Fujita T., Chen M., Chhowalla M.. Photoluminescence from chemically exfoliated MoS2. Nano Letters, 2011, 11(12): 5111-5116.

[20]

Lee H. S., Min S. W., Chang Y. G., Park M. K., Nam T., Kim H., . MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Letters, 2012, 12(7): 3695-3700.

[21]

Sanchez O. L., Lembke D., Kayci M., Radenovic A., Kis A.. Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology, 2013, 8(7): 497-501.

[22]

Fontana M., Deppe T., Boyd A. K., Rinzan M., Liu A. Y., Paranjape M., . Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Scientific Reports, 2013, 3, 1634-1–1634–5.

[23]

Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A.. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147-150.

[24]

Krasnozhon D., Lembke D., Nyffeler C., Leblebici Y., Kis A.. MoS2 transistors operating at gigahertz frequencies. Nano Letters, 2014, 14(10): 5905-5911.

[25]

Lee J., Wang Z., He K., Shan J., Feng X. L.. High frequency MoS2 nanomechanical resonators. ACS Nano, 2013, 7(7): 6086-6091.

[26]

Leeuwen R. V., Gomez A. C., Steele G. A., D. Zant H. S. J. V., Venstra W. J.. Time-domain response of atomically thin MoS2 nanomechanical resonators. Applied Physics Letters, 2014, 105(4): 041911-1–041911–3.

[27]

Gomez A. C., Leeuwen R. V., Buscema M., D. Zant H. S. J. V., Steele G. A., Venstra W. J.. Single-layer MoS2 mechanical resonators. Advanced Materials, 2013, 25(46): 6719-6723.

[28]

Chen H. J., Zhu K. D.. Coherent optical responses and their application in biomolecule mass sensing based on a monolayer MoS2 nanoresonator. Journal of the Optical Society of America B, 2014, 31(7): 1684-1690.

[29]

Li J. B., Xiao S., Liang S., He M. D., Kim N. C., Luo Y., . Switching freely between superluminal and subluminal light propagation in a monolayer MoS2 nanoresonator. Optics Express, 2017, 25(12): 13567-13576.

[30]

Lee C., Yan H., Brus L. E., Heinz T. F., Hone J., Ryu S.. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano, 2010, 4(5): 2695-2700.

[31]

Li T.. Ideal strength and phonon instability in single-layer MoS2. Physical Review B, Condensed Matter, 2012, 85(23): 235407.

[32]

Wang Z., Lee J., He K., Shan J., Feng P. X. L.. Embracing structural nonidealities and asymmetries in two-dimensional nanomechanical resonators. Scientific Reports, 2014, 4, 3919-3925.

[33]

Carvalho B. R., Malard L. M., Alves J. M., Fantini C., Pimenta M. A.. Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering. Physical Review Letters, 2015, 114(13): 136403-1–36403–5.

[34]

Frey G. L., Tenne R., Matthews M. J., Dresselhaus M. S., Dresselhaus G.. Raman and resonance Raman investigation of MoS2 nanoparticles. Physical Review B, 1999, 60(4): 2883-2892.

[35]

Xu X., Sun B., Berman P. R., Steel D. G., Bracker A. S., Gammon D., . Coherent optical spectroscopy of a strongly driven quantum dot. Science, 2007, 317(5840): 929-932.

[36]

Harris S. E., Field J. E., Kasapi A.. Dispersive properties of electromagnetically induced transparency. Physical Review A, 1992, 46(1): R29-R32.

[37]

Boyd R. W., Gauthier D. J.. Controlling the velocity of light pulses. Science, 2009, 326(5956): 1074-1077.

[38]

Naeini A. H. S., Alegre T. M., Chan J., Eichenfield M., Winger M., Lin Q., . Electromagnetically induced transparency and slow light with optomechanics. Nature, 2011, 472(7341): 69-73.

[39]

Okamoto H., Gourgout A., Chang C. Y., Onomitsu K., Mahboob I., Chang E. Y., . Coherent phonon manipulation in coupled mechanical resonators. Nature Physics, 2013, 9(8): 480-484.

[40]

Yan H., Low T., Guinea F., Xia F., Avouris P.. Tunable phonon-induced transparency in bilayer graphene nanoribbons. Nano Letters, 2014, 14(8): 4581-4586.

[41]

Li J. J., Zhu K. D.. Tunable slow and fast light device based on a carbon nanotube resonator. Optics Express, 2012, 20(6): 5840-5848.

[42]

Naeini A. H. S., Mayer A. T. P., Chan J., Eichenfield M., Winger M., Lin Q., . Electromagnetically induced transparency and slow light with optomechanics. Nature, 2014, 472, 69-73.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/