Young’s Modulus Measurement of Metal Wires Using FBG Sensor

Chunchan Chen , Li Liang , Wenwen Quan , Liangzhang Liao , Junhui Hu

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (3) : 277 -283.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (3) : 277 -283. DOI: 10.1007/s13320-019-0531-3
Regular

Young’s Modulus Measurement of Metal Wires Using FBG Sensor

Author information +
History +
PDF

Abstract

A novel Young’s modulus measurement scheme based on fiber Bragg gratings (FBG) is proposed and demonstrated experimentally. In our method, a universal formula relating the Bragg wavelength shift to Young’s modulus is derived and metal wires are loaded strain by using the static stretching method. The Young’s modulus of copper wires, aluminum wires, nickel wires, and tungsten wires are separately measured. Experimental results show that the FBG sensor exhibits high measurement accuracy, and the measurement errors relative to the nominal value is less than 1.0%. The feasibility of the FBG test method is confirmed by comparing it with the traditional charge coupled device (CCD) imaging method. The proposed method could find the potential application in the material selection, especially in the field that the size of metal wires is very small and the strain gauges cannot be qualified.

Keywords

Fiber Bragg grating / Young’s modulus / static stretching method / metal wire

Cite this article

Download citation ▾
Chunchan Chen, Li Liang, Wenwen Quan, Liangzhang Liao, Junhui Hu. Young’s Modulus Measurement of Metal Wires Using FBG Sensor. Photonic Sensors, 2018, 9(3): 277-283 DOI:10.1007/s13320-019-0531-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hill K. O., Meltz G.. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 1997, 15(8): 1263-1276.

[2]

Elgaud M. M., Zan M. S. D., Abushagur A., Bakar A. A. A.. Improvement of signal to noise ratio of time domain mutliplexing fiber Bragg grating sensor network with Golay complementary codes. Optical Fiber Technology, 2017, 36, 447-453.

[3]

Guo G., Hackney D. A., Pankow M., Peters K.. Interrogation of a spectral profile division multiplexed FBG^sensor network using a modified particle swarm optimization method. Measurement Science and Technology, 2017, 28, 055204.

[4]

Tian K., Liu Y. L., Wang Q. M.. Temperature-independent fiber Bragg grating strain sensor using bimetal cantilever. Optical Fiber Technology, 2005, 11(4): 370-377.

[5]

Jin L., Zhang W. G., Zhang H., Liu B., Zhao C. J., Tu Q. C., . An embedded FBG^sensor for simultaneous measurement of stress and temperature. IEEE Photonics Technology Letter, 2006, 18(1): 54-156.

[6]

Chamorovskiy Y. K., Butov O. V., Kolosovskiy A. O., Popov S. M., Voloshin V. V., Vorob′ev I. L., . Metal-coated Bragg grating reflecting fiber. Optical Fiber Technology, 2017, 34, 30-35.

[7]

Allwood G., Wild G., Lubansky A., Hinckley S.. A^highly sensitive fiber Bragg grating diaphragm pressure transduce. Optical Fiber Technology, 2015, 25, 25-32.

[8]

Liang W., Huang Y. Y., Xu Y., Lee R., Yariv A.. Highly sensitive fiber Bragg grating refractive index sensors. Applied Physics Letters, 2005, 86(15): 151122.

[9]

Oliveira J. H. R., Aristilde S., Chesini G., Franco M. A. R., Nogueira R. N., Cordeiro C. M. B.. Bragg gratings in surface-core fibers: refractive index and directional curvature sensing. Optical Fiber Technology, 2017, 34, 86-90.

[10]

Zhang Y. S., Zhang W. G., Zhang Y. X., Wang S., Yu L., Yan T. Y.. Simultaneous measurement of curvature and temperature based on LP 11 mode Bragg grating in seven-core fiber. Measurement Science and Technology, 2017, 28(5): 055101.

[11]

Allwood G., Wild G., Lubansky A., Hinckley S.. A^highly sensitive fiber Bragg grating diaphragm pressure transducer. Optical Fiber Technology, 2015, 25, 25-32.

[12]

Deng X. Y., Chen G. H., Peng Q. X., Li Z. R., Meng J. H., Liu J.. Research on the fiber Bragg grating sensor for the shock stress measurement. Review of Scientific Instrument, 2011, 82(10): 103109.

[13]

Treacy M. M. J., Ebbesen T. M. J., Gibson J. M.. Exceptionally high Young′s modulus observed for individual carbon nanotubes. Nature, 1996, 381, 678-681.

[14]

Krishnan A., Dujardin E., Ebbesen T. W., Yianilos P. N., Treacy M. M. J.. Young′s modulus of single-walled nanotubes. Physical Review B, 1998, 58(20): 14013-14019.

[15]

Maruyama I., Sasano H., Nishioka Y., Igarashi G.. Strength and Young′s modulus change in concrete due to long-term drying and heating up to 90. Cement and Concrete Research, 2014, 66, 48-63.

[16]

Quan W. W., Kang J., Yang L., Hu J. H.. Young′s modulus measurement of metal beams based on fiber Bragg grating. Laser & Optoelectronics Progress, 2016, 53, 040604.

[17]

Zou Y., Dong X. P., Lin G. B., Adhami R.. Wide range FBG^displacement sensor based on twin-core fiber filter. Journal of Lightwave Technology, 2012, 30(3): 337-343.

[18]

Hill D. J., Cranch G. A.. Gain in hydrostatic pressure sensitivity of coated fiber grating. Electronics letters, 1999, 35(15): 1268-1269.

[19]

Kersey A., Davis M. A., Patrick H. J., Leblanc M., Koo K., Askins C. G., . Fiber grating sensors. Journal of Lightwave Technology, 1997, 15(8): 1442-1463.

[20]

Huang W. Z., Zhang W. T., Li F.. Swept optical SSB-SC^modulation technique for high-resolution large-dynamic-range static strain measurement using FBG-FP sensors. Optics Letters, 2015, 40(7): 1406-1409.

[21]

Davis M. A., Kersey A.. All-fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler. Electronics Letters, 1994, 30(1): 75-77.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/