Optically Controlled Extraordinary Terahertz Transmission of Bi2Se3 Film Modulator

Junhu Zhou , Tong Zhou , Dongsheng Yang , Zhenyu Wang , Zhen Zhang , Jie You , Zhongjie Xu , Xin Zheng , Xiang-ai Cheng

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (3) : 268 -276.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (3) : 268 -276. DOI: 10.1007/s13320-019-0528-y
Regular

Optically Controlled Extraordinary Terahertz Transmission of Bi2Se3 Film Modulator

Author information +
History +
PDF

Abstract

Standing on the potential for high-speed modulation and switching in the terahertz (THz) regime, all-optical approaches whose response speeds mainly depend on the lifetime of nonequilibrium free carriers have attracted a tremendous attention. Here, we establish a novel bi-direction THz modulation experiment controlled by femtosecond laser for new functional devices. Specifically, time-resolved transmission measurements are conducted on a series of thin layers Bi2Se3 films fabricated straightforwardly on Al2O3 substrates, with the pump fluence range from 25 μJ/cm2 to 200 μJ/cm2 per pulse. After photoexcitation, an ultrafast switching of THz wave with a full recovery time of ~10 ps is observed. For a longer timescale, a photoinduced increase in the transmitted THz amplitude is found in the 8 and 10 quintuple layers (QL) Bi2Se3, which shows a thickness-dependent topological phase transition. Additionally, the broadband modulation effect of the 8 QL Bi2Se3 film is presented at the time delays of 2.2 ps and 12.5 ps which have a maximum modulation depth of 6.4% and 1.3% under the pump fluence of 200 μJ/cm2, respectively. Furthermore, the absorption of α optical phonon at 1.9 THz shows a time-dependent evolution which is consistent with the cooling of lattice temperature.

Keywords

Ultrafast optics / topological insulator / ultrafast photonic devices

Cite this article

Download citation ▾
Junhu Zhou, Tong Zhou, Dongsheng Yang, Zhenyu Wang, Zhen Zhang, Jie You, Zhongjie Xu, Xin Zheng, Xiang-ai Cheng. Optically Controlled Extraordinary Terahertz Transmission of Bi2Se3 Film Modulator. Photonic Sensors, 2018, 9(3): 268-276 DOI:10.1007/s13320-019-0528-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ren Y., Wallis R., Jessop D. S., Innocenti R. D., Klimont A., Beere H. E., . Fast terahertz imaging using a quantum cascade amplifier. Applied Physics Letters, 2015, 107, 26-33.

[2]

Ducournau G., Szriftgiser P., Pavanello F., Peytavit E., Zaknoune M., Bacquet D., . THz communications using photonics and electronic devices: the race to data-rate. Journal of Infrared, Millimeter and Terahertz Waves, 2015, 36(2): 198-220.

[3]

Theuer M., Harsha S. S., Molter D., Torosyan G., Beigang R.. Terahertz time-domain spectroscopy of gases, liquids, and solids. Chemphyschem, 2011, 12(15): 2695-2705.

[4]

Holloway C. L., Dienstfrey A., Kuester E. F., Hara J. F. O., Azad A. K., Taylor A. J.. A^discussion on the interpretation and characterization of metafilms/metasurfaces: the two-dimensional equivalent of metamaterials. Metamaterials, 2009, 3(2): 100-112.

[5]

Wagner M., Mcleod A. S., Maddox S. J., Fei Z., Liu M., Averitt R. D., . Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy. Nano Letters, 2015, 14(8): 4529-4534.

[6]

Chen H. T., Padilla W. J., Zide J. M. O., Bank S. R., Gossard A. C., Taylor A. J., . Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Optics Letters, 2007, 32(12): 1620-1622.

[7]

Li Q., Tian Z., Zhang X. Q., Singh R. J., Du L. L., Gu J. Q., . Active graphene-silicon hybrid diode for terahertz waves. Nature Communications, 2015, 6, 7082.

[8]

Zhao J., Xu Z. J., Zang Y. Y., Gong Y., Zheng X., He K., . Thickness-dependent carrier and phonon dynamics of topological insulator Bi2Te3 thin films. Optics Express, 2017, 25(13): 14635-14643.

[9]

Hasan M. Z., Kane C. L.. Colloquium: topological insulators. Physics, 2015, 39(10): 843-846.

[10]

Klintenberg M., Lebegue S., Katsnelson M. I., Eriksson O.. A^theoretical analysis of the chemical bonding and electronic structure of graphene interacting with Group IA and Group VIIA elements. Physical Review B: Condensed Matter, 2010, 81, 085433.

[11]

Di P. P., Ortolani M., Limaj O., Di G. A., Giliberti V., Giorgianni F., . Observation of Dirac plasmons in a topological insulator. Nature Nanotechnology, 2013, 8(8): 556-560.

[12]

Autore M., Apuzzo F. D., Gaspare A. D., Giliberti V., Limaj O., Roy P., . Plasmon-phonon interactions in topological insulator microrings. Advanced Optical Materials, 2015, 3(9): 1257-1263.

[13]

Yashina L. V., Sánchezbarriga J., Scholz M. R., Volykhov A. A., Sirotina A. P., Vera S. N., . Negligible surface reactivity of topological insulators Bi2Se3 and Bi2Te3 towards oxygen and water. ACS^Nano, 2013, 7(6): 5181-5191.

[14]

Okada Y., Madhavan V.. Topological insulators: plasmons at the surface. Nature Nanotechnology, 2013, 8(8): 541-542.

[15]

Sobota J. A., Yang S., Analytis J. G., Chen Y. L., Fisher I. R., Kirchmann P. S., . Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3. Physical Review Letters, 2012, 108(11): 117403.

[16]

Shahil K. M. F., Hossain M. Z., Goyal V., Balandin A. A.. Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials. Journal of Applied Physics, 2012, 111(5): 054305.

[17]

Park B. C., Kim T. H., Sim K. I., Kang B., Kim J. W., Cho B., . Terahertz single conductance quantum and topological phase transitions in topological insulator Bi2Se3 ultrathin films. Nature Communications, 2015, 6, 6552.

[18]

Aguilar R. V., Qi J., Taylor A. J., Yarotski D. A., Prasankumar R. P., Brahlek M., . Time-resolved terahertz dynamics in thin films of the topological insulator Bi2Se3. Applied Physics Letters, 2015, 106(1): 011901.

[19]

Liu C. X., Zhang H. J., Yan B., Qi X. L., Frauenheim T., Dai X., . Oscillatory crossover from two dimensional to three dimensional topological insulators. Physical Review B: Condensed Matter, 2009, 81(4): 1-8.

[20]

Linder J.. Anomalous finite size effects on surface states in the topological insulator Bi2Se3. Physical Review B: Condensed Matter, 2009, 80(20): 2665-2668.

[21]

Zhang Y., He K., Chang C. Z., Song C. L., Wang L. L., Chen X., . Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nature Physics, 2009, 6(8): 712-712.

[22]

Crepaldi A., Cilento F., Ressel B., Cacho C., Johannsen J. C., Zacchigna M., . Evidence of reduced surface electron-phonon scattering in the conduction band of Bi2Se3 by non-equilibrium ARPES. Physical Review B: Condensed Matter, 2013, 88(12): 95-103.

[23]

Manjappa M., Srivastava Y. K., Solanki A., Kumar A., Sum T. C., Singh R.. Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices. Advanced Materials, 2017, 29(32): 1605881.

[24]

Yang D. S., Jiang T., Cheng X. A.. Optically controlled terahertz modulator by liquid-exfoliated multilayer WS2 nanosheets. Optics Express, 2017, 25(14): 16364-16377.

[25]

Liu X. K., Zhang Z. Y., Lin X., Zhang K. L., Jin Z. M., Cheng Z. X., . Terahertz broadband modulation in a biased BiFeO3/Si heterojunction. Optics Express, 2016, 24(23): 26618-26628.

[26]

Punthawanunt S., Soysouvanh S., Luangxaysana K., Mitatha S., Yoshida M., Komine N., . THz switching generation using a PANDA^ring resonator for high speed computer communication. in Proceeding of Progress In Electromagnetics Research Symposium Proceedings, KL, Malaysia, 2012 173-176.

[27]

Wang Y. H., Hsieh D., Sie E. J., Steinberg H., Gardner D. R., Lee Y. S., . Measurement of intrinsic dirac fermion cooling on the surface of the topological insulator Bi2Se3 using time-resolved and angle-resolved photoemission spectroscopy. Physical Review Letters, 2012, 109(12): 127401.

[28]

Sim S., Brahlek M., Koirala N., Cha S., Oh S., Choi H.. Ultrafast terahertz dynamics of hot Dirac-electron surface scattering in the topological insulator Bi2Se3. Physical Review B, 2014, 89(16): 165137.

[29]

Baig S. A., Boland J. L., Damry D. A., Tan H. H.. An ultrafast switchable terahertz polarization modulator based on III−V^semiconductor nanowires. Nano Letters, 2017, 17, 2603-2610.

[30]

Lui C. H., Frenzel A. J., Pilon D. V., Lee Y. H., Ling X.. Trion-induced negative photoconductivity in monolayer MoS2. Physical Review Letters, 2014, 113(16): 166801.

[31]

Kar S., Nguyen V. L., Mohapatra D. R., Lee Y. H.. Ultrafast spectral photoresponse of bilayer graphene: optical pump-terahertz probe spectroscopy. ACS^Nano, 2018, 12(2): 1785-1792.

[32]

Jnawali G., Rao Y., Yan H., Heinz T. F.. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Letters, 2013, 13(2): 524-530.

[33]

Kar S., Su Y. M., Nair R. R., Sood A. K.. Probing photo-excited carriers in a few layer MoS2 laminate by time resolved optical pump-terahertz probe spectroscopy. ACS Nano, 2015, 9(12): 12004-12010.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/