Sub-Nanometer Displacement Sensor Based on Coupling of Balanced Loss and Gain Cavities

Yuntuan Fang , Xiaoxue Li

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (3) : 259 -267.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (3) : 259 -267. DOI: 10.1007/s13320-018-0526-5
Regular

Sub-Nanometer Displacement Sensor Based on Coupling of Balanced Loss and Gain Cavities

Author information +
History +
PDF

Abstract

Sub-nanometer displacement measurement is still a challenge in the current sensor field. In this study, a new type of displacement sensor is designed which is based on the coupling effect of two balanced gain and loss resonators. The optical properties of the sensor have been studied through the coupled mode theory and scatter matrix. The pole effect in the coupling system can be used to measure the sub-nanometer displacement. The resolution of the sensor can reach 0.001 nm over a dynamic range of 20 nm. The sensor has the highest sensitivity within the range of one nanometer. The environmental disturbance and structure parameter perturbation have been demonstrated to make trivial effect on the sensor performance.

Keywords

Displacement sensor / PT-symmetry / pole

Cite this article

Download citation ▾
Yuntuan Fang, Xiaoxue Li. Sub-Nanometer Displacement Sensor Based on Coupling of Balanced Loss and Gain Cavities. Photonic Sensors, 2018, 9(3): 259-267 DOI:10.1007/s13320-018-0526-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rasool H. I., Wilkinson P. R., Steig A. Z., Gimzewski J. K.. A^low noise all-fiber interferometer for high resolution frequency modulated atomic force microscopy. The Review of Scientific Instruments, 2010, 81(2): 023703.

[2]

Nowakowski B. K., Smith D. T., Smith S. T.. Highly compact fiber Fabry-Perot interferometer: a new instrument design. The Review of ScientificInstruments, 2016, 87(11): 115102.

[3]

Cervantes F. G., Kumanchik L., Pratt J., Taylor J. M.. High sensitivity optomechanical reference accelerometer over 10 kHz. Applied Physics Letters, 2014, 104, 221111.

[4]

Peng K., Liu X. K., Chen Z. R., Yu Z. C., Pu H. J.. Sensing mechanism and error analysis of a capacitive long-range displacement nanometer sensor based on time grating. IEEE^Sensors Journal, 2017, 17(6): 1596-1607.

[5]

Wu C. C., Liao C. H., Chen Y. Z., Yang J. S.. Common-path laser encoder with Littrow configuration. Sensors & Actuators A: Physical, 2013, 193(4): 69-78.

[6]

Zhou X. L., Yu Q. X.. Wide-range displacement sensor based on fiber-optic Fabry-Perot interferometer for subnanometer measurement. IEEE^Sensors Journal, 2011, 11(7): 1602-1606.

[7]

Yang C., Oyadiji S. O.. Development of two-layer multiple transmitter fibre optic bundle displacement sensor and application in structural health monitoring. Sensors and Actuators A: Physical, 2016, 244(15): 1-14.

[8]

Yang Y., Tian D., Chen K., Zhou X. L., Gong Z. F., Yu Q. X.. A^fiber-optic displacement sensor using the spectral demodulation method. Journal of Lightwave Technology, 2018, 36(17): 3666-3671.

[9]

Dao T. P., Ho N. L., Nguyen T. T., Le H. G., Thang P. T., Pham H. T., . Analysis and optimization of a micro displacement sensor for compliant microgripper. Microsystem Technologies, 2017, 23(12): 5375-5395.

[10]

Dao T. P., Huang S. C.. Design and analysis of a compliant micro-positioning platform with embedded strain gauges and viscoelastic damper. Microsystem Technologies, 2016, 23(2): 441-456.

[11]

Yang C., Oyadiji S. O.. Theoretical and experimental study of self-reference intensity-modulated plastic fibre optic linear array displacement sensor. Sensors & Actuators A: Physical, 2015, 222, 67-79.

[12]

Gao W., Kim S. W., Bosse H., Haitjema H., Chen Y. L., Lu X. D., . Measurement technologies for precision positioning. CIRP^Annals, 2015, 64(2): 773-796.

[13]

Fleming A. J.. A^review of nanometer resolution position sensors-operation and performance. Sensors and Actuators A: Physical, 2013, 190, 106-126.

[14]

Grotjohann T., Testa I., Leutenegger M., Leutenegger H., Bock H., Urban N. T., . Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature, 2011, 478, 204-208.

[15]

Baxter J.. Super-resolution imaging: beyond the limit. Nature Photonics, 2012, 6(6): 273-275.

[16]

Doyen G., Drakova D., Mujica V., Scheffler M.. Theory of the scanning tunneling microscope. Physica Status Solidi, 1992, 131, 107-108.

[17]

Souza S. T., Fonseca E. J. S., Jacinto C., Astrath N. G. C., Rodrigues T. P., Malacarne L. C.. Direct measurement of photo-induced nanoscale surface displacement in solids using atomic force microscopy. Optical Materials, 2015, 48, 71-74.

[18]

Feng L., Ganainy R. E., Ge L.. Non-hermitian photonics based on parity–time symmetry. Nature Photonics, 2017, 11, 752-762.

[19]

Wong Z. J., Xu Y. L., Kim J., O′Brien K., Wang Y., Feng L., . Lasing and anti-lasing in a single cavity. Nature Photonics, 2016, 10(12): 796-801.

[20]

Hodaei H., Hassan A. U., Wittek S., Gracia H. G., Ganainy R. E., Christodoulides D. N., . Enhanced sensitivity at higher-order exceptional points. Nature, 2017, 548, 187-191.

[21]

Chen P. Y., Sakhdari M., Hajizadegan M., Cui Q., Cheng M. M. C., Ganainy R. E., . Generalized parity–time symmetry condition for enhanced sensor telemetry. Nature Electronics, 2018, 1, 297-304.

[22]

Chang L., Jiang X. S., Hua S. Y., Yang C., Wen J. M., Jiang L., . Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nature Photonics, 2014, 8, 524-529.

[23]

Chong Y. D., Ge L., Stone A. D.. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Physical Review Letters, 2011, 106, 093902.

[24]

Ge L., Chong Y. D., Stone A. D.. Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures. Physical Review A, 2012, 85, 023802.

[25]

Barnes W. L.. Surface plasmon-polariton length scales: a route to sub-wavelength optics. Journal of Optics A: Pure and Applied Optics, 2006, 8(4): S87-S93.

[26]

Yeh P.. Optical waves in layered media, 2005 1-416.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/