Laser Wavelength Estimation Method Based on a High-Birefringence Fiber Loop Mirror

Ricardo I. Álvarez-Tamayo , Patricia Prieto-Cortés , Manuel Durán-Sánchez , Baldemar Ibarra-Escamilla , Antonio Barcelata-Pinzón , Evgeny A. Kuzin

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 89 -96.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 89 -96. DOI: 10.1007/s13320-018-0525-6
Regular

Laser Wavelength Estimation Method Based on a High-Birefringence Fiber Loop Mirror

Author information +
History +
PDF

Abstract

A simple method for the estimation of the wavelength of a fiber laser system is proposed. The method is based on the use of a high-birefringence-fiber loop mirror (HBFLM). The HBFLM exhibits a periodic transmission/reflection spectrum whose spectral characteristics are determined by the length and temperature of the high-birefringence fiber (HBF). Then, by the previous characterization of the HBFLM spectral transmission response, the central wavelength of the generated laser line can be estimated. By using a photodetector, the wavelength of the laser line is estimated during an HBF temperature scanning by measuring the temperature at which the maximum transmitted power of the HBFLM is reached. The proposed method is demonstrated in a linear cavity tunable Er/Yb fiber laser. This method is a reliable and low-cost alternative for laser wavelength determination in short wavelength ranges without the use of specialized and expensive equipment.

Keywords

Wavelength meter / fiber lasers / fiber optical loop mirror / high-birefringence fiber

Cite this article

Download citation ▾
Ricardo I. Álvarez-Tamayo, Patricia Prieto-Cortés, Manuel Durán-Sánchez, Baldemar Ibarra-Escamilla, Antonio Barcelata-Pinzón, Evgeny A. Kuzin. Laser Wavelength Estimation Method Based on a High-Birefringence Fiber Loop Mirror. Photonic Sensors, 2018, 9(1): 89-96 DOI:10.1007/s13320-018-0525-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Solomakha D. A., Toropov A. K.. Laser wavelength measurements (review). Soviet Journal of Quantum Electronics, 1977, 7(8): 929-942.

[2]

Dobosz M., Kozuchowski M.. Overview of the laser-wavelength measurement methods. Optics and Laser in Engineering, 2017, 98, 107-117.

[3]

Cordero J. H., Kozlov V. A., Carter A. L. G., Morse T. F.. Highly accurate method for single-mode fiber laser wavelength measurement. IEEE Photonics Technology Letters, 2002, 14(1): 83-85.

[4]

Chan C. C., Jin W., Ho H. L., Demokan M. S.. Performance analysis of a time-division-multiplexed fiber Bragg grating sensor array by use of a tunable laser source. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(5): 741-749.

[5]

Fox P. J., Scholten R. E., Walkiewicz M. R., Drullinger R. E.. A reliable, compact, and low-cost Michelson wavemeter for laser wavelength measurement. American Journal of Physics, 1999, 67(7): 624-630.

[6]

Ortega U. R.. Automated method for wavelength estimation in a two-beam interferometer based on the on-off switching of two laser-diode sources. European Journal of Physics, 2017, 38(4): 045303-1–045303–4.

[7]

Yan L. P., Chen B. Y., Yang W. F., Wei R. F., Zhao S. W.. A novel laser wavelength meter based on the measurement of synthetic wavelength. Review of Scientific Instruments, 2010, 81(11): 115104-1–115104–6.

[8]

Morales A., Urquijo J., Mendoza A.. Vertical high-precision Michelson wavemeter. Review of Scientific Instruments, 1993, 64(1): 76-81.

[9]

Das D., Banerjee A., Barthwal S., Natarajan V.. A rubidium-stabilized ring-cavity resonator for optical frequency metrology: precise measurement of the D1 line in 133Cs. European Physics Journal D, 2006, 38(3): 545-552.

[10]

Norgia M., Pesatori A., Svelto C.. Novel interferometric method for the measurement of laser wavelength/frequency-modulation sensitivity. IEEE Transactions on Instrumentation and Measurement, 2007, 56(4): 1373-1376.

[11]

Ye J., Schnatz H., Hollberg L. W.. Optical frequency combs: from frequency metrology to optical phase control. IEEE Journal of Quantum Electronics, 2003, 9(4): 1041-1058.

[12]

Zhang J., Lu Z. H., Wang Y. H., Liu T., Stejskal A., Zhao Y. N., . Exact frequency comb mode number determination in precision optical frequency measurements. Laser Physics, 2007, 17(17): 1025-1028.

[13]

Caulfied H. J., Zavalin A.. A nano/micro’ meso’ scale self-calibrating integrated optical wavelength and intensity meter. Applied Physics B, 2006, 84(1–2): 275-279.

[14]

Alhassen F., Dashiti P. Z., Lee H. P., Li Q., Kim C.. A compact all-fiber PDL-compensated acustooptic wavelength monitor. IEEE Photonics Technology Letters, 2005, 17(10): 2131-2133.

[15]

Cooper D., Smith P.. Simple and highly sensitive method for wavelength measurement of low-power time-multiplexed signals using optical amplifiers. Journal of Ligthwave Technology, 2003, 21, 1612-1620.

[16]

Wang Q., Farrell G.. Multimode-fiber-based edge filter for optical wavelength measurement application and its design. Microwave and Optical Technology Letters, 2006, 48(5): 900-902.

[17]

Dobosz M., Kozuchowski M.. Interference comparator for laser diode wavelength and wavelength instability measurement. Review of Scientific Instruments, 2016, 87(4): 736-757.

[18]

Kang J., Dong X. Y., Zhao C. L., Qian W. W., Li M. C.. Simultaneous measurement of strain and temperature with a long-period fiber grating inscribed Sagnac interferometer. Optics Communications, 2011, 248, 2145-2148.

[19]

Bravo M., Pinto A. M. R., Amo M. L., Kobelke J., Schuster K.. High precision micro-displacement fiber sensor through a suspended-core Sagnac interferometer. Optics Letters, 2012, 37(2): 202-204.

[20]

Zheng X. B., Liu Y. G., Wang Z., Han T. T., Wei C. L., Chen J. J.. Transmission and temperature sensing characteristics of a selective liquid-filled photonic-bandgap-fiber-based Sagnac interferometer. Applied Physics Letters, 2012, 100(14): 141104-1–141104–4.

[21]

Shi J., Wang Y. Y., Xu D. G., Zhang H. W., Su G. H., Duan L. C., . Temperature sensor based on fiber ring laser with Sagnac loop. IEEE Photonics Technology Letters, 2012, 28(7): 794-797.

[22]

Yang Y. H., Duan W. Q., Miao Y.. High precision measurement technology for beat length of birefringence optical fiber. Measurement Science and Technology, 2013, 24(2): 25201-25205.

[23]

Yang Y. H., Yang F. L., Wang H., Yang W., Jin W.. Temperature insensitive hydrogen sensor with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Journal of Lightwave Technology, 2015, 33(12): 2566-2571.

[24]

Tamayo R. I. Á, Sánchez M. D., Pinzón A. B., Cortés P. P., Berlanga A. F. R., Guzmán A. A. C., . Intracavity absorption gas sensor in the near-infrared region by using a tunable erbiumdoped fiber laser based on a Hi-Bi FOLM. SPIE, 2018, 10654, 1065413-1–1065413–7.

[25]

Tamayo R. I. Á, Sánchez M. D., Pottiez O., Kuzin E. A., Escamilla B. I., Rosas A. F.. Theoretical and experimental analysis of tunable Sagnac high-birefringence loop filter for dual-wavelength laser application. Applied Optics, 2011, 50(3): 253-260.

[26]

Mirza M. A., Stewart G.. Theory and design of a simple tunable Sagnac loop filter for multiwavelength fiber lasers. Applied Optics, 2008, 47(29): 5242-5252.

[27]

Kuzin E. A., Nuñez H. C., Korneev N.. Alignment of a birefringent fiber Sagnac interferometer by fiber twist. Optics Communications, 1999, 160, 37-41.

[28]

Tamayo R. I. Á, Sánchez M. D., Pottiez O., Escamilla B. I., Cruz J. L., Andrés M. V., . A dual-wavelength tunable laser with superimposed fiber Bragg gratings. Laser Physics, 2013, 23(5): 055104.

[29]

Sánchez M. D., Rosas A. F., Tamayo R. I. Á, Kuzin E. A., Pottiez O., Jimenez M. B., . Fine adjustment of cavity loss by Sagnac loop for a dual wavelength generation. Laser Physics, 2010, 20(5): 1270-1273.

[30]

Sánchez M. D., Kuzin E. A., Pottiez O., Escamilla B. I., Garcia A. G., Ordoñez F. M., . Tunable dual-wavelegnth actively Q-switched Er/Yb double-clad fiber laser. Laser Physics Letters, 2014, 11(1): 015102.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/