Infrared LSS-Target Detection Via Adaptive TCAIE-LGM Smoothing and Pixel-Based Background Subtraction

Yanfeng Wu , Yanjie Wang , Peixun Liu , Huiyuan Luo , Boyang Cheng , Haijiang Sun

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (2) : 179 -188.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (2) : 179 -188. DOI: 10.1007/s13320-018-0523-8
Regular

Infrared LSS-Target Detection Via Adaptive TCAIE-LGM Smoothing and Pixel-Based Background Subtraction

Author information +
History +
PDF

Abstract

Infrared small target detection is a significant and challenging topic for daily security. This paper proposes a novel model to detect LSS-target (low altitude, slow speed, and small target) under the complicated background. Firstly, the fundamental constituents of an infrared image including the complexity and entropy are calculated, which are invoked as adaptive control parameters of smoothness. Secondly, the adaptive L0 gradient minimization smoothing based on texture complexity and information entropy (TCAIE-LGM) is proposed in order to remove noises and suppress low-amplitude details in infrared image abstraction. Finally, difference of Gaussian (DoG) map is incorporated into the pixel-based adaptive segmentation (PBAS) background modeling algorithm, which can differ LSS-target from the sophisticated background. Experimental results demonstrate that the proposed novel model has a high detection rate and produces fewer false alarms, which outperforms most state-of-the-art methods.

Keywords

Small target detection / L0 smoothing / texture complexity / information entropy / pixel-based adaptive segmentation

Cite this article

Download citation ▾
Yanfeng Wu, Yanjie Wang, Peixun Liu, Huiyuan Luo, Boyang Cheng, Haijiang Sun. Infrared LSS-Target Detection Via Adaptive TCAIE-LGM Smoothing and Pixel-Based Background Subtraction. Photonic Sensors, 2018, 9(2): 179-188 DOI:10.1007/s13320-018-0523-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hu J., Yu Y., Liu F.. Small and dim target detection by background estimation. Infrared Physics & Technology, 2015, 73, 141-148.

[2]

Yang W. P., Lu X. P., Li J. C., Zhang Z. L.. Fast algorithm of infrared small target detection in jitter background. SPIE, 2015, 9476, 947614.

[3]

Deng H., Liu J. G., Chen Z.. Infrared small target detection based on modified local entropy and EMD. Chinese Optics Letters, 2010, 8(1): 24-28.

[4]

Abdelkawy E., Mcgaughy D.. Small infrared target detection using two-dimensional fast orthogonal search (2D-FOS). SPIE, 2003, 5094, 179-185.

[5]

Xie T., Chen Z., Ma R. Y.. A novel method for infrared small target detection based on PGF, BEMD and LIE. Journal of Infrared & Millimeter Waves, 2017, 36(1): 92-101.

[6]

Huang D. Y., Xue A. K., Guo Y. F.. Penalty dynamic programming algorithm for dim targets detection in sensor systems. Sensors, 2012, 12(4): 5028-5046.

[7]

Gao J. L., Wen C. L., Liu M. Q.. Robust small target Co-detection from airborne infrared image sequences. Sensors, 2017, 17(10): 2242.

[8]

Li Z. Z., Chen J., Hou Q., Fu H. X., Dai Z., Li R. Z., . Sparse representation for infrared dim target detection via a discriminative over-complete dictionary learned online. Sensors, 2014, 14(6): 9451-9470.

[9]

Kim S.. Sea-based infrared scene interpretation by background type classification and coastal region detection for small target detection. Sensors, 2015, 15(9): 24487-24513.

[10]

Kim S., Lee J.. Small infrared target detection by region-adaptive clutter rejection for sea-based infrared search and track. Sensors, 2014, 14(7): 13210-13242.

[11]

Bai X. Z., Zhou F. G.. Analysis of new top-hat transformation and the application for infrared dim small target detection. Pattern Recognition, 2010, 43(6): 2145-2156.

[12]

Wang P., Tian J. W., Gao C. Q.. Infrared small target detection using directional highpass filters based on LS-SVM. Electronics Letters, 2009, 45(3): 156-158.

[13]

Guariglia E.. Entropy and fractal antennas. Entropy, 2016, 18(3): 1-17.

[14]

Reed I. S., Gagliardi R. M., Stotts L. B.. Optical moving target detection with 3-D matched filtering. IEEE Transactions on Aerospace & Electronic Systems, 2002, 24(4): 327-336.

[15]

Shen X. M., Deng L.. Game theory approach to discrete H, filter design. Signal Processing IEEE Transactions, 1997, 45(4): 1092-1095.

[16]

Caselles V., Kimmel R., Sapiro G.. Geodesic active contours. International Journal of Computer Vision, 1997, 22(1): 61-79.

[17]

Liu Z. J., Chen C. Y., Shen X. B.. Detection of small objects in image data based on the nonlinear principal component analysis neural network. Optical Engineering, 2005, 44(9): 093604.

[18]

Yao C., Chen W.. Research on infrared dim and small target detection based on improved particle algorithm. Progress in Laser and Optoelectronics, 2017, 11, 143-148.

[19]

Liu J., Ji H.. Infrared dim and small target detection based on mobile weighted pipeline filtering. Journal of Xi’an Electronic and Science University (NATURAL SCIENCE EDITION), 2007, 34(5): 743-747.

[20]

Huang Y., Zhang X. F., Xin Y. U.. Pipeline filtering detection method for photon imaging stationary point target. Chinese Optics, 2013, 6(1): 73-79.

[21]

Nie H. S., Huang Z. J., Diao J. T., Chen J., Liu H. J., Li Q.. A Wiener filter based infrared small target detecting and tracking method. in Proceeding of International Conference on Intelligent System Design and Engineering Application, Changsha, China, 2010 184-187.

[22]

Wu Y. F., Sun H. J., Liu P. X.. A novel fast detection method of infrared LSS-Target in complex urban background. International Journal of Wavelets Multiresolution & Information Processing, 2018, 16(01): 1619-1632.

[23]

Scribner D. A., Sarkady K. A., Kruer M. R.. Adaptive retina-like preprocessing for imaging detector arrays. Proceeding of IEEE International Conference on Neural Networks, 1993, 3, 1955-1960.

[24]

Scribner D. A., Caulfield J. T.. Nonuniformity correction for staring IR focal plane arrays using scene-based techniques. in Proceedings of SPIE: The International Society for Optical Engineering, San Francisco, CA, USA, 1990 224-233.

[25]

Harris J. G.. Nonuniformity correction of infrared image sequences using the constant-statistics constraint. Image Processing IEEE Transactions, 1999, 8(8): 1148-1151.

[26]

Qin H. L., Liu S. Q., Zhou H. X., Lai R.. Nonuniformity correction algorithm based on wavelet transform for infrared focal plane arrays. Acta Optica Sinica, 2007, 7(9): 1617-1620.

[27]

Xu L., Lu C. W., Xu Y., Jia J. Y.. Image smoothing via L0 gradient minimization. ACM Transactions on Graphics, 2011, 30(6): 1-12.

[28]

Shannon C. E.. A mathematical theory of communication. Bell System Technical Journal, 1948, 27(3): 379-423.

[29]

Hofmann M., Tiefenbacher P., Rigoll G.. Background segmentation with feedback: the pixel-based adaptive segmenter. in Proceeding of 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 2012 38-43.

[30]

Barnich O., Droogenbroeck M. V.. ViBe: a universal background subtraction algorithm for video sequences. IEEE Transactions on Image Processing, 2011, 20(6): 1709-1724.

[31]

SadaranganiNikhil An improved Gaussian mixture model algorithm for background subtraction. Massachusetts Institute of Technology, 2002 1-72.

[32]

Elgammal A., Duraiswami R., Harwood D., Davis L. S.. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc. of the IEEE, 2002, 90(7): 1151-1163.

[33]

Wang C. Y., Qin S. Y.. Adaptive detection method of infrared small target based on target-background separation via robust principal component analysis. Infrared Physics & Technology, 2015, 69, 123-135.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/