Surface Measurement Using Compressed Wavefront Sensing

Eddy Mun Tik Chow , Ningqun Guo , Edwin Chong , Xin Wang

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (2) : 115 -125.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (2) : 115 -125. DOI: 10.1007/s13320-018-0521-x
Regular

Surface Measurement Using Compressed Wavefront Sensing

Author information +
History +
PDF

Abstract

Compressed sensing leverages the sparsity of signals to reduce the amount of measurements required for its reconstruction. The Shack-Hartmann wavefront sensor meanwhile is a flexible sensor where its sensitivity and dynamic range can be adjusted based on applications. An investigation is done by using compressed sensing in surface measurements with the Shack-Hartmann wavefront sensor. The results show that compressed sensing paired with the Shack-Hartmann wavefront sensor can reliably measure surfaces accurately. The performance of compressed sensing is compared with those of the iterative modal-based wavefront reconstruction and Fourier demodulation of Shack-Hartmann spot images. Compressed sensing performs comparably to the modal based iterative wavefront reconstruction in both simulation and experiment while performing better than the Fourier demodulation in simulation.

Keywords

Shack-Hartmann wavefront sensor / surface measurement / compressed sensing

Cite this article

Download citation ▾
Eddy Mun Tik Chow, Ningqun Guo, Edwin Chong, Xin Wang. Surface Measurement Using Compressed Wavefront Sensing. Photonic Sensors, 2018, 9(2): 115-125 DOI:10.1007/s13320-018-0521-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yuan D. C., Zhao H. Y., Tao X., Li S. B., Zhu X. L., Zhang C. P.. Aspheric surface measurement using capacitive sensors. Sensors, 2017, 17(6): 1355.

[2]

Zhao Y., Li P. S., Wang C. S., Pu Z. B.. A novel fiber-optic sensor used for small internal curved surface measurement. Sensors and Actuators A: Physical, 2000, 86(3): 211-215.

[3]

Li Y. D., Gu P.. Free-form surface inspection techniques state of the art review. Computer-Aided Design, 2004, 36(13): 1395-1417.

[4]

Jiang X., Scott P. J., Whitehouse D. J., Blunt L.. Paradigm shifts in surface metrology. part II. the current shift. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2007, 463(2085): 2071-2099.

[5]

Riedel J., Stürwald S., Schmitt R.. Scanning measurement of aspheres. Measurement, 2016, 85, 249-254.

[6]

Tang Y., Su X. Y., Liu Y. K., Jing H. L.. 3D shape measurement of the aspheric mirror by advanced phase measuring deflectometry. Optics Express, 2008, 16(19): 15090-15096.

[7]

Burge J. H.. Applications of computer-generated holograms for interferometric measurement of large aspheric optics. SPIE, 1995, 2576, 258-269.

[8]

Forest C. R., Canizares C. R., Neal D. R., McGuirk M., Schattenburg M. L.. Metrology of thin transparent optics using Shack-Hartmann wavefront sensing. Optical Engineering, 2004, 43, 1-12.

[9]

Platt B. C., Shack R.. History and principles of Shack-Hartmann wavefront sensing. Journal of Refractive Surgery, 2001, 17(5): S573-S577.

[10]

Yu H. B., Zhou G. Y., Fook S. C., Lee F. W., Wang S. H.. A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array. Journal of Micromechanics and Microengineering, 2008, 18(10): 105017.

[11]

Häusler G., Richter C., Leitz K. H., Knauer M. C.. Microdeflectometry–a novel tool to acquire three-dimensional microtopography with nanometer height resolution. Optics Letters, 2008, 33(4): 396-398.

[12]

Guo W., Zhao L., Tong C. S., Ming C. I., Joshi S. C.. Adaptive centroid-finding algorithm for freeform surface measurements. Applied Optics, 2013, 52(10): D75-D83.

[13]

Yin X. M., Zhao L. P., Li X., Fang Z. P.. Automatic centroid detection and surface measurement with a digital Shack-Hartmann wavefront sensor. Measurement Science and Technology, 2010, 21(1): 015304.

[14]

Zhao L., Bai N., Li X., Ong L. S., Fang Z. P., Asundi A. K.. Efficient implementation of a spatial light modulator as a diffractive optical microlens array in a digital Shack-Hartmann wavefront sensor. Applied Optics, 2006, 45(1): 90-94.

[15]

Donoho D. L.. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

[16]

Hosseini M. S., Michailovich O. V.. Derivative compressive sampling with application to phase unwrapping. in Proceeding of 2009 17th European Signal Processing Conference, 2009, UK: Glasgow, 115-119.

[17]

Rostami M., Michailovich O. V., Wang Z.. Surface reconstruction in gradient-field domain using compressed sensing. IEEE Transactions on Image Processing, 2015, 24(5): 1628-1638.

[18]

Rostami M., Michailovich O., Wang Z.. Image deblurring using derivative compressed sensing for optical imaging application. IEEE Transactions on Image Processing, 2012, 21(7): 3139-3149.

[19]

Noll R. J.. Zernike polynomials and atmospheric turbulence. Journal of the Optical Society of America, 1976, 66(3): 207-211.

[20]

Roddier N. A.. Atmospheric wavefront simulation using Zernike polynomials, 1990 1174-1180.

[21]

Polans J., McNabb R. P., Izatt J. A., Farsiu S.. Compressed wavefront sensing. Optics Letters, 2014, 39(5): 1189-1192.

[22]

Carmon Y., Ribak E.. Phase retrieval by demodulation of a Hartmann-Shack sensor. Optics Communications, 2003, 215(4–6): 285-288.

[23]

Gong H., Soloviev O., Verhegen M., Vdovin G.. Shack-Hartmann reflective micro profilometer. SPIE, 2018, 10616, 106160.

[24]

Sakhaee E., Entezari A.. Sparse partial derivatives and reconstruction from partial Fourier data. in Proceeding of 2016 IEEE International Conference on Acoustics, 2015, Brisbane, QLD, Australia: Speech and Signal Processing

[25]

Rostami M., Michailovich O., Wang Z.. Gradient-based surface reconstruction using compressed sensing. in Proceeding of 2012 19th IEEE International Conference on Image Processing, Orlando, FL, USA, 2012 913-916.

[26]

Dai G. M.. Modified Hartmann-Shack wavefront sensing and iterative wavefront reconstruction. SPIE, 1994, 2201, 562-573.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/