Highly Sensitive Refractive Index Sensor Based on Polymer Long-Period Waveguide Grating With Liquid Cladding

Lingfang Wang , Keyu Ren , Bao Sun , Kaixin Chen

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 19 -24.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 19 -24. DOI: 10.1007/s13320-018-0520-y
Regular

Highly Sensitive Refractive Index Sensor Based on Polymer Long-Period Waveguide Grating With Liquid Cladding

Author information +
History +
PDF

Abstract

We propose a novel structure and unique sensing mechanism bio-chemical sensor which is fabricated by a polymer long-period waveguide grating with the detection liquid directly as the waveguide cladding. Quantitative detection is realized from analyzing the output absorption spectrum and resonant wavelength shift related to the liquid detection concentration. The proposed polymer long-period waveguide grating based liquid refractive-index sensor is developed experimentally, the high sensitivity of 1.01 × 104 nm/RIU is achieved, and the temperature stability coefficient is 1.47 nm/°C. Theoretically and experimentally, this work has been demonstrated to have potential application in chemical and biological detections and may provide an important technical support for solving today’s increasingly serious civil problems such as food safety and drug safety, which will also have the important scientific significance and application prospects.

Keywords

Optical sensor / polymer waveguides / long-period waveguide gratings / liquid cladding

Cite this article

Download citation ▾
Lingfang Wang, Keyu Ren, Bao Sun, Kaixin Chen. Highly Sensitive Refractive Index Sensor Based on Polymer Long-Period Waveguide Grating With Liquid Cladding. Photonic Sensors, 2018, 9(1): 19-24 DOI:10.1007/s13320-018-0520-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Y. L., Gao B. W., Zhang K., Yuan K., Wan Y., Xie Z. A., . Refractive index sensor based on leaky resonant scattering of single semiconductor nanowire. ACS Photonics, 2017, 4(3): 688-694.

[2]

Gu Z. T., Luo T., Gao K.. Structure design of refractive index sensor based on LPFG with double-layer coatings. Optical & Quantum Electronics, 2013, 45(7): 761-768.

[3]

Wang Q. T., Liu G. J., Zhang X., Wang Y. J., Li C.. Highly sensitive long period fiber grating refractive index sensor based on thin cladding. in Proceeding of 2015 International Conference on Optoelectronics and Microelectronics (ICOM), Changchun, 2015 455-460.

[4]

Teng C. X., Yu F. D., Ding Y., Zheng J.. Refractive index sensor based on multi-mode plastic optical fiber with long period grating. SPIE, 2017, 10231, 10231.

[5]

Orghici R., Lützow P., Burgmeier J., Koch J., Heidrich H., Schade W., . A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT). Sensors, 2010, 10(7): 6788-6795.

[6]

Nitkowski A., Chen L., Lipson M.. Cavity-enhanced on-chip absorption spectroscopy using microring resonators. Optics Express, 2008, 16(16): 11930-11936.

[7]

White I. M., Oveys H., Fan X. D.. Liquid-core optical ring-resonator sensors. Optics Letters, 2006, 31(9): 1319-1321.

[8]

Khorasaninejad M., Clarke N., Anantram M. P., Saini S. S.. Optical bio-chemical sensors on snow ring resonators. Optics Express, 2011, 19(18): 17575-17584.

[9]

Leidner L., Ewald M., Sieger M., Mizaikoff B., Gauglitz G.. Migrating the Mach-Zehnder chemical and bio-sensor to the mid-infrared region. SPIE, 2013, 8774(2): 140-144.

[10]

Misiakos K., Raptis I., Makarona E., Botsialas A., Salapatas A., Oikonomou P., . All-silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor. Optics Express, 2014, 22(22): 26803-26813.

[11]

Claes T., Molera J. G., De Vos K., Schacht E., Baets R., Bienstman P.. Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. IEEE Photonics Journal, 2009, 1(3): 197-204.

[12]

Rastogi V., Chiang K. S.. Long-period gratings in planar optical waveguides. Applied Optics, 2002, 41(30): 6351-6355.

[13]

Kwon M. S., Shin S. Y.. Tunable polymer waveguide notch filter using a thermo optic long-period grating. IEEE Photonics Technology Letters, 2005, 17(1): 145-147.

[14]

Chiang K. S., Chow C. K., Liu Q., Chan H. P., Lor K. P.. Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide. IEEE Photonics Technology Letters, 2006, 18(9): 1109-1111.

[15]

Wang L. F., Song Q. Q., Wu J. Y., Chen K. X.. Low-power variable optical attenuator based on a hybrid SiON-polymer S-bend waveguide. Applied Optics, 2016, 55(5): 969-973.

[16]

Liu Q., Chiang K. S., Lor K. P., Chow C. K.. Temperature sensitivity of a long-period waveguide grating in a channel waveguide. Applied Physics Letters, 2005, 86(24): 241115.

[17]

Chu Y. M., Chiang K. S., Liu Q.. Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings. Applied Optics, 2006, 45(12): 2755-2760.

[18]

Jin W., Chiang K. S., Liu Q.. Electro-optic long-period waveguide gratings in lithium niobate. Optics Express, 2008, 16(25): 20409-20417.

[19]

Chow C. K., Chiang K. S., Liu Q., Lor K. P., Chan H. P.. UV-written long-period waveguide grating coupler for broadband add/drop multiplexing. Optics Communications, 2009, 282, 378-381.

[20]

Kwon M. S., Shin S. Y.. Refractive index sensitivity measurement of a long-period waveguide grating. IEEE Photonics Technology Letters, 2005, 17(9): 1923-1925.

[21]

Liu Q., Chiang K. S.. Refractive-index sensor based on long-range surface plasmon mode excitation with long-period waveguide grating. Optics Express, 2009, 17(10): 7933-7942.

[22]

Slavík R., Homola J.. Ultrahigh resolution long range surface plasmon-based sensor. Sensors & Actuators B: Chemical, 2007, 123(1): 10-12.

[23]

Slavík R., Homola J.. Optical multilayers for LED-based surface plasmon resonance sensors. Applied Optics, 2006, 45(16): 3752-3759.

[24]

Wang Q., Du C., Zhang J. M., Lv R. Q., Zhao Y.. Sensitivity-enhanced temperature sensor based on PDMS-coated long period fibre grating. Optics Communications, 2016, 377, 89-93.

[25]

Mamidi V. R., Srimannarayana K., Ravinuthala L. N. S., Madhuvarasu S. S., Rao T. V., Pachava V. R., . Fibre Bragg grating-based high temperature sensor and its low-cost interrogation system with enhanced resolution. Optica Applicata, 2014, 44(2): 299-308.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/