Resonant Light Scattering Toward Optical Fiber Humidity Sensors

Mahboubeh Dehghani Sanij , Abolfazl Bahrampour , Ali Reza Bahrampour

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 60 -68.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 60 -68. DOI: 10.1007/s13320-018-0519-4
Regular

Resonant Light Scattering Toward Optical Fiber Humidity Sensors

Author information +
History +
PDF

Abstract

The deposition of tetrakis (4-sulonatophenyl) porphyrin (TPPS) thin film on optical fibers presents many possibilities for sensing applications. The J-form aggregation with a narrow and sharp spectral feature at about 490 nm and its sensitivity to humidity have been discussed; a fast change of wavelength occurs according with variation in the humidity level. The reproducibility and high sensitivity of TPPS-coated fibers, along with the capabilities of optical fibers, suggest the device as a good candidate for humidity sensing in harsh environments.

Keywords

Humidity / chemical / porphyrin-based / chemical optical fiber sensor

Cite this article

Download citation ▾
Mahboubeh Dehghani Sanij, Abolfazl Bahrampour, Ali Reza Bahrampour. Resonant Light Scattering Toward Optical Fiber Humidity Sensors. Photonic Sensors, 2018, 9(1): 60-68 DOI:10.1007/s13320-018-0519-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yeo T. L., Sun T., Grattan K. T. V.. Fibre-optic sensor technologies for humidity and moisture measurement. Sensors and Actuators A: Physical, 2008, 144(2): 280-295.

[2]

Giordano M., Russo M., Cusano A., Cutolo A., Mensitieri G., Nicolais L.. Optical sensor based on ultrathin films of δ-form syndiotactic polystyrene for fast and high resolution detection of chloroform. Applied Physics Letters, 2004, 85(22): 5349-5351.

[3]

Cusano A., Pilla P., Contessa L., Iadicicco A., Campopiano S., Cutolo A., . High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water. Applied Physics Letters, 2005, 87(23): 234105.

[4]

Otsuki S., Adachi K., Taguchi T.. A novel fibre-optic gas sensing arrangement based on an air gap setting and an application to optical detection of humidity. Analytical Sciences, 1998, 14(3): 633-635.

[5]

Glenn S. J., Cullum B. M., Nair R. B., Nivens D. A., Murphy C. J., Angel S. M.. Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion (TM) membrane. Analytica Chimica Acta, 2001 448.

[6]

Tao S. Q., Winstead C. B., Jindal R., Singh J. P.. Optical-fibre sensor using tailored porous sol-gel fiber core. IEEE Sensors Journal, 2004, 4(3): 322-328.

[7]

Bedoya M., Díez M. T., Bondi M. C. M., Orellana G.. Humidity sensing with a luminescent Ru (II) complex and phase-sensitive detection. Sensors and Actuators B: Chemical, 2006, 113(2): 573-581.

[8]

Muto S., Suzuki O., Amano T., Morisawa M.. A plastic optical fiber sensor for real-time humidity monitoring. Measurement Science and Technology, 2003, 14(6): 746-750.

[9]

Arregui F. J., Ciaurriz Z., Oneca M., Matias I. R.. An experimental study about hydrogels for the fabrication of optical fiber humidity sensors. Sensors and Actuators B: Chemical, 2003 96.

[10]

Gastón A., Pérez F., Sevilla J.. Optical fiber relative-humidity sensor with polyvinyl alcohol film. Applied Optics, 2004, 43(21): 4127-4132.

[11]

Herrero A. A., Guerrero H., Levy D.. High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers. IEEE Sensors Journal, 2004, 4(1): 52-56.

[12]

Xu L., Fanguy J. C., Soni K., Tao S.. Optical fiber humidity sensor based on evanescent-wave scattering. Optics Letters, 2004, 29(11): 1191-1193.

[13]

Corres J. M., Bravo J., Matias I. R., Arregui F. J.. Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms. IEEE Photonics Technology Letters, 2006, 18(8): 935-937.

[14]

Kronenberg P., Rastogi P. K., Giaccari P., Limberger H. G.. Relative humidity sensor with optical fiber Bragg gratings. Optics Letters, 2002, 27(16): 1385-1387.

[15]

Luo S., Liu Y., Sucheta A., Evans M., Tassell R. V.. Applications of LPG fiber optical sensors for relative humidity and chemical-warfare-agents monitoring. Advanced Sensor Systems and Applications, 2002, 4920, 193-205.

[16]

Tan K. M., Tay C. M., Tjin S. C., Chan C. C., Rahardjo H.. High relative humidity measurements using gelatin coated long-period grating sensors. Sensors and Actuators B: Chemical, 2005, 110(2): 335-341.

[17]

Konstantaki M., Pissadakis S., Pispas S., Madamopoulos N., Vainos N. A.. Optical fiber long-period grating humidity sensor with poly (ethylene oxide)/cobalt chloride coating. Applied Optics, 2006, 45(19): 4567-4571.

[18]

Lim S. H., Feng L., Kemling J. W., Musto C. J., Suslick K. S.. An optoelectronic nose for detection of toxic gases. Nature Chemistry, 2009, 1(7): 562-567.

[19]

Kadish K. M., Smith K. M., Guilard R.. Handbook of the Porphyrin: inorganic, organometallic and coordination chemistry, 2000, Amsterdam, Netherlands: Elsevier

[20]

Zhang X. B., Li Z. Z., Guo C. C., Chen S. H., Shen G. L., Yu R. Q.. Porphyrin-metalloporphyrin composite based optical fiber sensor for the determination of berberine. Analytica Chimica Acta, 2001, 439(1): 65-71.

[21]

Zhang X. B., Guo C. C., Li Z. Z., Shen G. L., Yu R. Q.. An optical fiber chemical sensor for mercury ions based on a porphyrin dimer. Analytical Chemistry, 2002, 74(4): 821-825.

[22]

Ni R., Tong R. B., Guo C. C., Shen G. L., Yu R. Q.. An anthracene/porphyrin dimer fluorescence energy transfer sensing system for picric acid. Talanta, 2004, 63(2): 251-257.

[23]

Huyang G., Canning J., Aslund M. L., Stocks D., Khoury T., Crossley M. J.. Evaluation of optical fiber microcell reactor for use in remote acid sensing. Optics Letters, 2010, 35(6): 817-819.

[24]

Selyanchyn R., Korposh S., Yasukochi W., Lee S. W.. A preliminary test for skin gas assessment using a porphyrin based evanescent wave optical fiber sensor. Sensors & Transducers, 2011, 125(2): 54-67.

[25]

Stelitano S., De Luca G., Savasta S., Patané S.. Polarized emission from high quality microcavity based on active organic layered domains. Applied Physics Letters, 2008, 93(19): 193302.

[26]

Araki K., Wagner M. J., Wrighton M. S.. Layer-by-layer growth of electrostatically assembled multilayer porphyrin films. Langmuir, 1996, 12(22): 5393-5398.

[27]

Zhang Z. J., Hou S. F., Zhu Z. H., Liu Z. F.. Preparation and characterization of a porphyrin self-assembled monolayer with a controlled orientation on gold. Langmuir, 2000, 16(2): 537-540.

[28]

Scolaro L. M., Romeo A., Castriciano M. A., De Luca G., Patanè S., Micali N.. Porphyrin deposition induced by UV irradiation. Journal of the American Chemical Society, 2003, 125(8): 2040-2041.

[29]

Luca G. D., Pollicino G., Romeo A., Patanè S., Scolaro L. M.. Control over the optical and morphological properties of UV-deposited porphyrin structures. Chemistry of Materials, 2006, 18(23): 5429-5436.

[30]

Luca G. D., Pollicino G., Romeo A., Scolaro L. M.. Sensing behavior of tetrakis (4-sulfonatophenyl) porphyrin thin films. Chemistry of Materials, 2006, 18(8): 2005-2007.

[31]

Bhopate D. P., Kim K., Mahajan P. G., Gore A. H., Patil S. R., Majhi S. M., . Fluorescent chemosensor for quantitation of multiple atmospheric gases. Journal of Nanomed Nanotechnol, 2017, 8(2): 1-9.

[32]

Bahrampour A., Iadicicco A., Luca G. D., Giordano M., Borriello A., Cutolo A., . Porphyrin thin films on fibre optic probes through UV-light induced deposition. Optics & Laser Technology, 2013, 49, 279-283.

[33]

Bahrampour A., Iadicicco A., Luca G. D., Giordano M., Cutolo A., Scolaro L. M., . Sensing characteristics to acid vapors of a TPPS coated fiber optic: a preliminary analysis. World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 2012, 6(11): 989-992.

[34]

De Luca G., Romeo A., Villari V., Micali N., Foltran I., Foresti E., . Self-organizing functional materials via ionic self assembly: porphyrins H- and J-aggregates on synthetic chrysotile nanotubes. Journal of the American Chemical Society, 2009, 131(20): 6920-6921.

[35]

Scheibe G.. Variability of the absorption spectra of some sensitizing dyes and its cause. Angewandte Chemie, 1936, 49, 563-564.

[36]

Scheibe G.. Über die veränderlichkeit der absorptionsspektren in lösungen und die nebenvalenzen als ihre ursache. Angewandte Chemie, 1937, 50(11): 212-219.

[37]

Jelley E. E.. Spectral absorption and fluorescence of dyes in the molecular state. Nature, 1936, 138(3502): 1009-1010.

[38]

Briggs J. S., Herzenberg A.. Sum rules for the vibronic spectra of helical polymers. Journal of Physics B: Atomic and Molecular Physics, 1970, 3(12): 1663-1676.

[39]

Spano F. C., Silva C.. H-and J-aggregate behavior in polymeric semiconductors. Annual Review of Physical Chemistry, 2014, 65, 477-500.

[40]

Sauer M., Hofkens J.. Handbook of fluorescence spectroscopy and imaging: from ensemble to single molecules. Hoboken, New Jersey, 2010

[41]

Eisfeld A., Briggs J. S.. The J- and H-bands of organic dye aggregates. Chemical Physics, 2006 324.

[42]

Tredgold R. H.. Langmuir-blodgett films: organic monolayer imaged. Nature, 1985, 313(6001): 348-348.

[43]

Lenahan K. M., Wang Y. X., Liu Y., Claus R. O., Heflin J. R., Marciu D., . Novel polymer dyes for nonlinear optical applications using ionic self-assembled monolayer technology. Advanced Materials, 1998, 10(11): 853-855.

[44]

Bahrampour A.. New hollow core fiber design and porphyrin thin film deposition method towards enhanced optical fiber sensors. Ph.D. dissertation, University of Naples, Italy, 2013

[45]

Pasternack R. F., Huber P. R., Boyd P., Engasser G., Francesconi L., Gibbs E., . Aggregation of meso-substituted water-soluble porphyrins. Journal of the American Chemical Society, 1972, 94(13): 4511-4517.

[46]

Collings P. J., Gibbs E. J., Starr T. E., Vafek O., Yee C., Pomerance L. A., . Resonance light scattering and its application in determining the size, shape, and aggregation number for supramolecular assemblies of chromophores. The Journal of Physical Chemistry B, 1999, 103(40): 8474-8481.

[47]

Ardakani A. G., Mahdavi S. M., Bahrampour A. R.. Time-dependent theory for random lasers in the presence of an inhomogeneous broadened gain medium such as PbSe quantum dots. Applied Optics, 2013, 52(6): 1317-1324.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/