Application of MZI Symmetrical Structure With Fiber Balls and Seven-Core Fiber in Microdisplacement Measurement

Liming Zhao , Hong Li , Yanming Song , Mingli Dong , Lianqing Zhu

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (2) : 97 -107.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (2) : 97 -107. DOI: 10.1007/s13320-018-0518-5
Regular

Application of MZI Symmetrical Structure With Fiber Balls and Seven-Core Fiber in Microdisplacement Measurement

Author information +
History +
PDF

Abstract

An optical fiber microdisplacement sensor based on symmetric Mach-Zehnder interferometer (MZI) with a seven-core fiber and two single-mode fiber balls is proposed. The rationality and manufacturing process of the MZI sensing structure are analyzed. The fabrication mechanism of the Mach-Zehnder sensor by CO2 laser is described in detail. Experimental results show that temperature sensitivities of the two dips are 98.65 pm/°C and 89.72 pm/°C, respectively. The microdisplacement sensitivities are 2017.71 pm/mm and 2457.92 pm/mm, respectively. The simultaneous measurement of temperature and microdisplacement is demonstrated based on the sensitive matrix. The proposed Mach-Zehnder interference sensor exhibits the advantages of compact structure, simple manufacturing process, and high reliability.

Keywords

Microdisplacement / Mach-Zehnder interferometer / fiber ball / symmetrical structure / seven-core fiber

Cite this article

Download citation ▾
Liming Zhao, Hong Li, Yanming Song, Mingli Dong, Lianqing Zhu. Application of MZI Symmetrical Structure With Fiber Balls and Seven-Core Fiber in Microdisplacement Measurement. Photonic Sensors, 2018, 9(2): 97-107 DOI:10.1007/s13320-018-0518-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Babu A., George B.. Design and development of a new non-contact inductive displacement sensor. IEEE Sensors Journal, 2018, 18(3): 976-984.

[2]

Rana S., George B., Kumar V. J.. An efficient digital converter for a non-contact inductive displacement sensor. IEEE Sensors Journal, 2018, 18(1): 263-272.

[3]

Rimpault X., Nehme E. B., Balazinski M., Mayer J. R. R.. Online monitoring and failure detection of capacitive displacement sensor in a Capball device using fractal analysis. Measurement, 2018, 118, 23-28.

[4]

Arifin A., Hatta A. M., Sekartedjo, Muntini M. S., Rubiyanto A.. Long-range displacement sensor based on SMS fiber structure and OTDR. Photonic Sensors, 2015, 5(2): 166-171.

[5]

Sethuramalingam M., Subbiah U.. Enhancing the linearity characteristics of photoelectric displacement sensor based on extreme learning machine method. Photonic Sensors, 2015, 5(1): 24-31.

[6]

Xie X. L., Wang B. W., Zhou L. L., Weng L., Sun Y.. Research on torsional ultrasonic attenuation characteristics of the magnetostrictive displacement sensor waveguide. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2018, 33(3): 689-696.

[7]

Chen S. M., Liu Y., Liu X. X., Zhang Y., Peng W.. Self-compensating displacement sensor based on hydramatic structured transducer and fiber Bragg grating. Photonic Sensors, 2015, 5(4): 351-356.

[8]

Zhong C., Shen C. Y., Chu J. L., Zou X., Li K., Jin Y. X., . A displacement sensor based on a temperature-insensitive double trapezoidal structure with fiber Bragg grating. IEEE Sensors Journal, 2012, 12(5): 1280-1283.

[9]

Shangguan C. W., He W., Zhnag W., Luo F., Zhu L. Q.. Optical fiber Fabry-Perot displacement sensor based on chemical etching method. Semiconductor Optoelectronics, 2018, 39(02): 170-173.

[10]

Liu C., Zhang W., Dong M. L., Lou X. P., Zhu L. Q.. Dual-parameter sensing characteristics of long period fiber grating cascaded with fiber MZ structure fabricated by CO2 laser. Infrared & Laser Engineering, 2017, 46(9): 922001-922007.

[11]

Wang Y., Li Y. H., Liao C. R., Wang D. N., Yang M. W., Lu P. X.. High-temperature sensing using miniaturized fiber in-line Mach-Zehnder interferometer. IEEE Photonics Technology Letters, 2009, 22(1): 39-41.

[12]

Lin H. S., Raji Y. M., Lim J. H., Liu S. K., Mokhtar M. R., Yusoff Z.. Packaged in-line Mach-Zehnder interferometer for highly sensitive curvature and flexural strain sensing. Sensors & Actuators A: Physical, 2016, 250, 237-242.

[13]

Chen J. P., Zhou J., Jia Z. H.. High-sensitivity displacement sensor based on a bent fiber Mach-Zehnder interferometer. IEEE Photonics Technology Letters, 2013, 25(23): 2354-2357.

[14]

Shen C. Y., Chu J. L., Lu Y. F., Chen D. B., Zhong C., Li Y., . High sensitive micro-displacement sensor based on M-Z interferometer by a bowknot type taper. IEEE Photonics Technology Letters, 2013, 26(1): 62-65.

[15]

Zhou S., Huang B., Shu X. W.. A multi-core fiber based interferometer for high temperature sensing. Measurement Science & Technology, 2017, 28(4): 045107.

[16]

Duan L., Zhang P., Tang M., Wang R. X., Zhao Z. Y., Fu S. N., . Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing. Optics Express, 2016, 24(18): 20210-20217.

[17]

Yin B., Li Y., Liu Z. B., Feng S. C., Bai Y. L., Xu Y., . Investigation on a compact inline multimode-single-mode-multimode fiber structure. Optics & Laser Technology, 2016, 80, 16-21.

[18]

Li L. C., Xia L., Xie Z. H., Liu D. M.. All-fiber Mach-Zehnder interferometers for sensing applications. Optics Express, 2012, 20(10): 11109-11120.

[19]

Wu D., Zhu T., Chiang K. S., Deng M.. All single-mode fiber Mach-Zehnder interferometer based on two peanut-shape structures. Journal of Lightwave Technology, 2012, 30(5): 805-810.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/