Fiber-Optic Raman Spectrum Sensor for Fast Diagnosis of Esophageal Cancer

Jianhua Dai , Xiu He , Zhuoyue Li , Kang Li , Tingting Yang , Zengling Ran , Lijian Yin , Yao Chen , Xiang Zou , Dianchun Fang , Guiyong Peng

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 53 -59.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 53 -59. DOI: 10.1007/s13320-018-0516-7
Regular

Fiber-Optic Raman Spectrum Sensor for Fast Diagnosis of Esophageal Cancer

Author information +
History +
PDF

Abstract

A fiber-optic Raman spectrum sensor system is used for the fast diagnosis of esophageal cancer during clinical endoscopic examination. The system contains a 785 nm exciting laser, a Raman fiber-optic probe with 7 large core fibers and a focus lens, and a highly sensitive spectrum meter. The Raman spectrum of the tissue could be obtained within 1 second by using such a system. A signal baseline removal and denoising technology is used to improve the signal quality. A novel signal feature extraction method for differentiating the normal and esophageal cancer tissues is proposed, based on the differences in half-height width (HHW) in 1200 cm‒1 to 1400 cm‒1 frequency band and the ratios of the spectral integral energy between 1600 cm‒1 − 1700 cm‒1 and 1500 cm‒1 − 1600 cm‒1 band. It shows a high specificity and effectivity for the diagnosis of esophageal cancer.

Keywords

Fiber-optic / Raman spectrum / esophageal cancer

Cite this article

Download citation ▾
Jianhua Dai, Xiu He, Zhuoyue Li, Kang Li, Tingting Yang, Zengling Ran, Lijian Yin, Yao Chen, Xiang Zou, Dianchun Fang, Guiyong Peng. Fiber-Optic Raman Spectrum Sensor for Fast Diagnosis of Esophageal Cancer. Photonic Sensors, 2018, 9(1): 53-59 DOI:10.1007/s13320-018-0516-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jemal A., Siegel R., Xu J. Q., Ward E.. Cancer statistics. CA: A Cancer Journal for Clinicians, 2010, 60(5): 277-300.

[2]

Brown L. M., Devesa S. S., Chow W. H.. Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. Journal of the National Cancer Institute, 2008, 100(16): 1184-1187.

[3]

Devesa S. S., Blot W. J., Fraumeni J. F.. Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer, 1998, 83(10): 2049-2053.

[4]

Krishnamoorthi R., Singh S., Ragunathan K., Katzka D. A., Wang K. K., Iyer P. G.. Risk of recurrence of Barrett’s esophagus after successful endoscopic therapy. Gastrointestinal Endoscopy, 2016, 83(6): 1090-1106.

[5]

Oyama T., Tomori A., Hotta K., Morita S., Kominato K., Tanaka M., . Endoscopic submucosal dissection of early esophageal cancer. Clinical Gastroenterology and Hepatology, 2005, 3(7): S67-S70.

[6]

Fujishiro M., Yahagi N., Kakushima N., Kodashima S., Muraki Y., Ono S., . Endoscopic submucosal dissection of esophageal squamous cell neoplasms. Clinical Gastroenterology and Hepatology, 2006, 4(6): 688-694.

[7]

Ohki T., Yamato M., Ota M., Takagi R., Murakami D., Kondo M., . Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology, 2012, 143(3): 582-588.

[8]

Mizumoto T., Hiyama T., Ok S., Yorita N., Kuroki K., Kurihara M., . Curative criteria after endoscopic resection for superficial esophageal squamous cell carcinomas. Digestive Diseases and Sciences, 2018, 63(6): 1605-1612.

[9]

Fleichmann C., Messmann H.. Endoscopic treatment of early esophageal squamous neoplasia. Minerva Chirurgica, 2018, 73(4): 378-384.

[10]

Sreedharan L., Mayne G. C., Watson D. I., Bright T., Lord R. V., Ansar A., . MicroRNA profile in neosquamous esophageal mucosa following ablation of Barrett’s esophagus. World Journal of Gastroenterology, 2017, 23(30): 5508-5518.

[11]

Choudhury S. N., Konwar B., Kaur S., Doley R., Mondal B.. Study on snake venom protein-antibody interaction by surface plasmon resonance spectroscopy. Photonic Sensors, 2018, 8(3): 193-202.

[12]

Xiao C., Chen Z. B., Qing M. Z., Zhang D. X., Fan L.. Composite sinusoidal nanograting with long-range SERS effect for label-free TNT detection. Photonic Sensors, 2018, 8(3): 1-11.

[13]

Cui S. S., Zhang S., Yue S. H.. Raman spectroscopy and imaging for cancer diagnosis. Journal of Healthcare Engineering, 2018 8619342-1–8619342–11.

[14]

Wang T. D., Triadafilopoulos G., Crawford J. M., Dixon L. R., Bhandari T., Sahbaie P., . Detection of endogenous biomolecules in Barrett’s esophagus by Fourier transform infrared spectroscopy. Proceedings of the National Academy of Sciences, 2007, 104(40): 15864-15869.

[15]

Shim M. G., Michel W. K. S. L., Marcon N. E., Wilson B. C.. In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy. Photochemistry and Photobiology, 2000, 72(1): 146-150.

[16]

Huang Z. W., Teh S. K., Zheng W., Mo J. H., Lin K., Shao X. Z., . Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy. Optics Letters, 2009, 34(6): 758-760.

[17]

Shetty G., Kendall C., Shepherd N., Stone N., Barr H.. Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. British Journal of Cancer, 2006, 94, 1460-1464.

[18]

Bergholt M. S., Zheng W., Ho K. Y., Teh M., Yeoh K. G., So J. B. Y., . Fiber-optic confocal Raman spectroscopy for real-time in vivo diagnosis of dysplasia in Barrett’s esophagus. Gastroenterology, 2014, 146(1): 27-32.

[19]

Hu Y. G., Shen A. G., Jiang T., Ai Y., Hu J. M.. Classification of normal and malignant human gastric mucosa tissue with confocal Raman microspectroscopy and wavelet analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008, 69(2): 378-382.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/