Ultrafast Nonlinear Optical Excitation Behaviors of Mono- and Few-Layer Two Dimensional MoS2

Yizhi Wang , Zhongyuan Guo , Jie You , Zhen Zhang , Xin Zheng , Xiangai Cheng

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 1 -10.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 1 -10. DOI: 10.1007/s13320-018-0514-9
Regular

Ultrafast Nonlinear Optical Excitation Behaviors of Mono- and Few-Layer Two Dimensional MoS2

Author information +
History +
PDF

Abstract

The layered MoS2 has recently attracted significant attention for its excellent nonlinear optical properties. Here, the ultrafast nonlinear optical (NLO) absorption and excited carrier dynamics of layered MoS2 (monolayer, 3–4 layers, and 6–8 layers) are investigated via Z-scan and transient absorption spectra. Our experimental results reveal that NLO absorption coefficients of these MoS2 increase from–27 × 103 cm/GW to–11 × 103 cm/GW with more layers at 400-nm laser excitation, while the values decrease from 2.0 × 103 cm/GW to 0.8 × 103 cm/GW at 800 nm. In addition, at high pump fluence, when the NLO response occurs, the results show that not only the reformation of the excitonic bands, but also the recovery time of NLO response decreases from 150 ps to 100 ps with an increasing number of layers, while the reductive energy of A excitonic band decreases from 191.7 meV to 51.1 meV. The intriguing NLO response of MoS2 provides excellent potentials for the next-generation optoelectronic and photonic devices.

Keywords

Ultrafast optics / two-dimensional materials / ultrafast photonic devices

Cite this article

Download citation ▾
Yizhi Wang, Zhongyuan Guo, Jie You, Zhen Zhang, Xin Zheng, Xiangai Cheng. Ultrafast Nonlinear Optical Excitation Behaviors of Mono- and Few-Layer Two Dimensional MoS2. Photonic Sensors, 2018, 9(1): 1-10 DOI:10.1007/s13320-018-0514-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mak K. F., He K., Lee C., Lee G. H., Hone J., Heinz T. F., . Tightly bound trions in monolayer MoS2. Nature Materials, 2013, 12(3): 207-211.

[2]

Tsai D. S., Liu K. K., Lien D. H., Tsai M. L., Kang C. F., Lin C. A., . Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environment. ACS Nano, 2013, 7(5): 3905-3911.

[3]

Wang K. P., Wang J., Fan J. T., Lotya M., O’Neill A., Fox D., . Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano, 2013, 7(10): 9260-9267.

[4]

Zheng X., Chen R. Z., Shi G., Zhang J. W., Xu Z. J., Cheng X. A., . Characterization of nonlinear properties of black phosphorus nanoplatelets with femtosecond pulsed Z-scan measurements. Optics Letters, 2015, 40, 3480-3483.

[5]

Jiang Y. Q., Miao L. L., Jiang G. B., Chen Y., Qi X., Jiang X. F., . Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Scientific Reports, 2015, 5, 16372-1–16372–12.

[6]

Huang Z. Y., Han W. J., Tang H. L., Ren L., Chander D. S., Qi X., . Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Materials, 2015, 2(3): 035011-1–035011–6.

[7]

Dhanabalan S. C., Ponraj J. S., Bao Q., Zhang H.. Present perspectives of broadband photo-detectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials. Nanoscale, 2016, 8, 6410-6434.

[8]

Liu M., Zheng X. M., Qi Y. L., Liu H., Luo A. P., Luo Z. C., . Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser. Optics Express, 2014, 22(19): 22841-22846.

[9]

Ponraj J. S., Xu Z. Q., Dhanabalan S. C., Mu H., Wang Y., Yuan J., . Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology, 2016, 27, 462001-1–462001–33.

[10]

Mao D., Wang Y. D., Ma C. J., Han L., Jiang B. Q., Gan X. T., . WS2 mode-locked ultrafast fiber laser. Scientific Reports, 2015, 5(7965): 7965-1–7965–7.

[11]

Zhang S. F., Dong N. N., Mcevoy N., O’Brien M., Winters S., Berner N. C., . Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films. ACS Nano, 2015, 9, 7142-7150.

[12]

Mak K. F., Lee C., Hone J., Shan J., Heinz T. F.. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, 105, 136805-1–136805–15.

[13]

Wang H., Zhang C., Rana F.. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Letters, 2015, 15(1): 339-345.

[14]

Nie Z., Long R., Teguh J. S., Huang C. C., Hewak D. W., Yeow E. K. L., . Ultrafast electron and hole relaxation pathways in few-layer MoS2. Journal of Physical Chemistry C, 2015, 119, 20698-20708.

[15]

Moody G., Schaibley J., Xu X.. Exciton dynamics in monolayer transition metal dichalcogenides. Journal of the Optical Society of America B, 2016, 33(7): C39-C49.

[16]

Shi H., Yan R., Bertolazzi S., Brivio J., Gao B., Kis A., . Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano, 2013, 7(2): 1072-1080.

[17]

Tsokkou D., Yu X., Sivula K., Banerji N.. The role of excitons and free charges in the excited-state dynamics of solution-processed few-layer MoS2 nanoflakes. Journal of Physical Chemistry C, 2016, 120(40): 23286-23292.

[18]

Yu Y. F., Li C., Liu Y., Su L. Q., Zhang Y., Cao L. Y.. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Scientific Reports, 2013, 3(5): 01866-1–01866–6.

[19]

Ataca C., Şahin H., Ciraci S.. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. Journal of Physical Chemistry C, 2012, 116, 8983-8999.

[20]

Li H., Zhang Q., Yap C. C. R., Tay B. K., Edwin T. H. T., Olivier A., . From bulk to monolayer MoS2: evolution of Raman scattering. Advanced Functional Materials, 2012, 22(7): 1385-1390.

[21]

Splendiani A., Sun L., Zhang Y., Li T., Kim J., Chim C. Y., . Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010, 10(4): 1271-1275.

[22]

Ramasubramaniam A.. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Physical Review B Condensed Matter, 2012, 86(11): 2757-2764.

[23]

Jiang T., Chen R. Z., Zheng X., Xu Z. J., Tang Y. H.. Photo-induced excitonic structure renormalization and broadband absorption in monolayer tungsten disulphide. Optics Express, 2018, 26(2): 859-869.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/