Axial Micro-Strain Sensor Based on Resonance Demodulation Technology Via Dual-Mode CMECF

Xiao Liang , Tigang Ning , Jingcong Li , Yang Li , Zhiming Liu

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 78 -88.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 78 -88. DOI: 10.1007/s13320-018-0513-x
Regular

Axial Micro-Strain Sensor Based on Resonance Demodulation Technology Via Dual-Mode CMECF

Author information +
History +
PDF

Abstract

This paper firstly and experimentally demonstrates an in-fiber axial micro-strain sensing head, combined with a Mach-Zehnder interferometer (MZI) based on the concentric multilayer elliptical-core fiber (CMECF). This MZI with a high extinction ratio (about 15 dB) is successfully achieved with a CMECF-single mode fiber-CMECF (CSC) structure. The MZI sensor theory and the resonance demodulation technology are systematically described in this paper. In this CSC structure, two sections of the CMECF have a role as the mode generator and coupler, respectively. LP01 and LP11 even, which have similar excitation coefficients, are two dominated propagating mode groups supported in the CMECF. On account of the distinct dual-mode property, a good stability of this sensor is realized. The detected resonance in the MZI shifts as the axial micro-strain variated due to the strong interaction between higher order modes. High sensitivity of ∼1.78 pm/με is experimentally achieved within the range of 0 με–1250 με, meanwhile, the intensity fluctuation is below 0.38 dB.

Keywords

Few-mode fiber / fiber sensor / MZI / axial micro-strain

Cite this article

Download citation ▾
Xiao Liang, Tigang Ning, Jingcong Li, Yang Li, Zhiming Liu. Axial Micro-Strain Sensor Based on Resonance Demodulation Technology Via Dual-Mode CMECF. Photonic Sensors, 2018, 9(1): 78-88 DOI:10.1007/s13320-018-0513-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rindorf L., Bang O.. Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing. Journal of the Optical Society of America B, 2008, 25(3): 310-324.

[2]

Zhou D. P., Lit J. W. Y., Wei L., Liu W. K., Liu Y.. Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers. Applied optics, 2008, 47(10): 1668-1672.

[3]

Yin G. L., Tang J., Liao C. R., Wang G. J., Wang Y. P.. Determination of optical fiber parameters based on fiber gratings and a search procedure. Journal of Lightwave Technology, 2017, 35(16): 3591-3596.

[4]

Wang Y. P., Xiao L., Wang D. N., Jin W.. Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity. Optics Letters, 2006, 31(23): 3414-3416.

[5]

Barabach G. S., Kowal D., Szczurowski M. K., Mergo P., Urbanczyk W.. Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber. IEEE Photonics Technology Letters, 2013, 25(5): 496-499.

[6]

Cui W., Si J. H., Chen T., Hou X.. Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper. Optics Express, 2015, 23(9): 11031-11036.

[7]

Yin G. L., Lou S. Q., Zou H.. Refractive index sensor with asymmetrical fiber Mach-Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section. Optics & Laser Technology, 2013, 45, 294-300.

[8]

Dong X. Y., Tam H. Y., Shum P.. Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Applied Physics Letters, 2007, 90(15): 151113-1–151113–3.

[9]

Deng M., Tang C. P., Zhu T., Rao Y. J.. PCF-based Fabry-Pérot interferometric sensor for strain measurement at high temperatures. IEEE Photonics Technology Letters, 2011, 23(11): 700-702.

[10]

Zhao T., Gong Y., Rao Y. J., Wu Y., Ran Z. L., Wu H. J.. Fiber-optic Fabry-Perot strain sensor based on graded-index multimode fiber. Chinese Optics Letters, 2011, 9(5): 11-14.

[11]

Liang X., Liu S., Li Y., Liu Z. B., Jian S. S.. Characteristics of a high extinction ratio comb-filter based on LP01–LP11 even mode elliptical multilayer-core fibers. Optical Fiber Technology, 2015, 21, 103-109.

[12]

Hlubina P., Prochazka P.. Sensor applications of two-mode fiber in the Michelson interferometer configuration. SPIE, 1994, 2341, 202-211.

[13]

Guo P., Rao Y. J., Li D. Y., Gong Y., Peng G. D., Wu Y., . Inscription of Bragg gratings in few-mode optical fibers. Chinese Optics Letters, 2013, 11(2): 020606-1–020606–3.

[14]

Yin G. L., Wang C. L., Zhao Y. H., Jiang B. Q., Zhu T., Wang Y. P., . Multi-channel mode converter based on a modal interferometer in a two-mode fiber. Optics Letters, 2017, 42(19): 3757-3760.

[15]

Moon D. S., Kim B. K., Lin A., Sun G., Han W. T., Han Y. G., . Tunable multi-wavelength SOA fiber laser based on a Sagnac loop mirror using an elliptical core side-hole fiber. Optics Express, 2007, 15(13): 8371-8376.

[16]

Takenaga K., Sasaki Y., Guan N., Matsuo S., Kasahara M., Saitoh K., . Large effective-area few-mode multicore fiber. IEEE Photonics Technology Letters, 2012, 24(21): 1941-1944.

[17]

Xia C., Correa R. A., Bai N., Lopez E. A., Arrioja D. M., Schulzgen A., . Low-crosstalk few-mode multi-core fiber for high-mode-density space-division multiplexing. Proceeding of 2012 38th European Conference and Exhibition on Optical Communications, 2012 1-3.

[18]

Wei C. F., Lin G. B., Dong X. P., Tao S. C.. A tunable polarization-independent comb filter based on high-order mode fiber. Journal of Optics, 2013, 15(5): 055403-1–055403–6.

[19]

Zhang Q. W., Zeng X. L., Pang F. F., Wang M., Wang T. Y.. Switchable multiwavelength fiber laser by using a compact in-fiber Mach-Zehnder interferometer. Journal of Optics, 2012, 14(4): 045403-1–045403–5.

[20]

Hlubina P., Martynkien T., Olszewski J., Mergo P., Makara M., Poturaj K., . Spectral-domain measurements of birefringence and sensing characteristics of a side-hole microstructured fiber. Sensors, 2013, 13(9): 11424-11438.

[21]

Martincek I., Pudis D., Kacik D., Schster K.. Investigation of intermodal interference of LP01 and LP11 modes in the liquid-core optical fiber for temperature measurements. Optik–International Journal for Light and Electron Optics, 2011, 122(8): 707-710.

[22]

Murphy K. A., Miller M. S., Vengsarkar A. M., Claus R. O.. Elliptical-core two mode optical-fiber sensor implementation methods. Journal of Lightwave Technology, 1990, 8(11): 1688-1696.

[23]

Yin G. L., Wang C. L., Zhao Y. H., Jiang B. Q., Zhu T., Wang Y. P., . Multi-channel mode converter based on a modal interferometer in a two-mode fiber. Optics Letters, 2017, 42(19): 3757-3760.

[24]

Kim Y. H., Song K. Y.. Mapping of intermodal beat length distribution in an elliptical-core two-mode fiber based on Brillouin dynamic grating. Optics Express, 2014, 22(14): 17292-17302.

[25]

Geisler T., Pedersen M. E. V., Herstrøm S.. Measurement of spatial and polarization birefringence in two-mode elliptical core fibers. Proceeding of 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, 2013 1-3.

[26]

Mohammed W. S., Mehta A., Johnson E. G.. Wavelength tunable fiber lens based on multimode interference. Journal of Lightwave Technology, 2004, 22(2): 469-477.

[27]

Li H., Ren G., Atakaramians S., Kuhlmey B. T., Jian S.. Linearly polarized single TMmode terahertz waveguide. Optics Letters, 2016, 41(17): 4004-4007.

[28]

Soldano L. B., Pennings E. C.. Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 1995, 13(4): 615-627.

[29]

Wong C. C., Su M. C., Lin N. S.. A compact all fiber refractive index sensor based on modal interference. IEEE Sensors, 2012, 3(11): 1-4.

[30]

Li E.. Temperature compensation of multimodeinterference- based fiber devices. Optics Letters, 2007, 32(14): 2064-2066.

[31]

Mina D. G., Haus J. W., Chong A., Khanolkar A., Sarangan A., Hansen K.. Bi-tapered fiber sensor using visible to near infrared light. Sensors and Actuators A: Physical, 2017, 263, 285-290.

[32]

Liu J., Wang D. N., Liu Y.. Sensitivity improvement by fusion splicing of single mode fibers with core offset. Optical Materials Express, 2017, 7(10): 3722-3730.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/