Realization of Low-Cost Multichannel Surface Plasmon Resonance Based Optical Transducer

Manjunath Somarapalli , Romuald Jolivot , Waleed Mohammed

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (4) : 289 -302.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (4) : 289 -302. DOI: 10.1007/s13320-018-0511-z
Regular

Realization of Low-Cost Multichannel Surface Plasmon Resonance Based Optical Transducer

Author information +
History +
PDF

Abstract

This paper demonstrates a low-cost and portable multichannel surface plasmon resonance (SPR) based optical transducer. The system’s portability is achieved through the development of compact web-cam based spectrometer, and edge coupling to the SPR chip. Here, two configurations are presented: single-channel integrated system and two-channel system where the SPR chip and the spectrometer are coupled by a pair of plastic optical fibers. For the two-channel configuration, two different approaches are utilized to extract the optical spectrum: manual region cropping and automatic regions detection. For both approaches, image distortion and the size of the fiber tip affect the measured spectrum. For all configurations, mechanical alignment and mounting are made by 3D printing. The developed systems are tested with water and glycerol solution of different concentrations. The measured sensitivity is in the order of 10‒4 RIU (refractive index unit) for all systems under the ambient condition.

Keywords

Plasmon / optical diffraction grating / optical fibers / spectrometer / 3D design / image processing

Cite this article

Download citation ▾
Manjunath Somarapalli, Romuald Jolivot, Waleed Mohammed. Realization of Low-Cost Multichannel Surface Plasmon Resonance Based Optical Transducer. Photonic Sensors, 2017, 8(4): 289-302 DOI:10.1007/s13320-018-0511-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Manera M. G., Rella R.. Improved gas sensing performances in SPR sensors by transducers activation. Sensors and Actuators B: Chemical, 2013, 179(4): 175-186.

[2]

Galatus R., Feier B., Cristea C., Cennamo N., Zeni L.. SPR based hybrid electro-optic biosensor for β-lactam antibiotics determination in water. SPIE, 2017, 10405, 104050C-1–104050C–6.

[3]

Geiss F., Fossati S., Khan I., Quilis N. G., Knoll W., Dostalek J.. UV-SPR biosensor for biomolecular interaction studies. SPIE, 2017, 10231, 1023107-1–1023107–8.

[4]

Kyaw H. H., Boonruang S., Mohammed W. S., Dutta J.. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water. AIP Advances, 2015, 5(10): 246-253.

[5]

Choi Y. H., Lee G. Y., Ko H., Chang Y. W., Kang M. J., Pyun J. C.. Development of SPR biosensor for the detection of human hepatitis B virus using plasma-treated parylene-N film. Biosensors and Bioelectronics, 2014, 56(56): 286-294.

[6]

Zhang X. L., Liu Y., Fan T., Hu N., Yang Z., Chen X., . Design and performance of a portable and multichannel SPR device. Sensors, 2017, 17(6): 1435-1–1435–7.

[7]

Maegawa S., Yamaguchi J., Itoigawa F., Nakamura T.. Discussion on surface plasmon resonance technique in the Otto configuration for measurement of lubricant film thickness. Tribology Letters, 2016, 62(2): 1-14.

[8]

Thirstrup C., Zong W., Borre M., Neff H., Pedersen H. C., Holzhueter G.. Diffractive optical coupling element for surface plasmon resonance sensors. Sensors and Actuators B: Chemical, 2004, 100(3): 298-308.

[9]

Liu Q., Liu Y., Chen S. M., Wang F., Peng W.. A low-cost and portable dual-channel fiber optic surface plasmon resonance system. Sensors, 2017, 17(12): 2797-1–2797–8.

[10]

Somarapalli M., Koul K., Lahon R., Boonruang S., Mohammed W. S.. Demonstration of low-cost and compact SPR optical transducer through edge light coupling. Micro & Nano Letters, 2017, 12(9): 643-646.

[11]

Nizamov S., Scherbahn V., Mirsky V. M.. Self-referencing SPR-sensor based on integral measurements of light intensity reflected by arbitrarily distributed sensing and referencing spots. Sensors and Actuators B: Chemical, 2015, 207, 740-747.

[12]

Zhou X. L., Chen K., Li L., Peng W., Yu Q. X.. Angle modulated surface plasmon resonance spectrometer for refractive index sensing with enhanced detection resolution. Optics Communications, 2017, 382, 610-614.

[13]

Zhang H., Song D. Q., Gao S., Zhang H. Q., Zhang J., Sun Y.. Enhanced wavelength modulation SPR biosensor based on gold nanorods for immunoglobulin detection. Talanta, 2013, 115(115): 857-862.

[14]

Chinowsky T. M., Quinn J. G., Bartholomew D. U., Kaiser R., Elkind J. L.. Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor. Sensors and Actuators B: Chemical, 2003, 91(1): 266-274.

[15]

Neuert G., Kufer S., Benoit M., Gaub H. E.. Modular multichannel surface plasmon spectrometer. Review of Scientific Instruments, 2005, 76(5): 054303-1–054303–4.

[16]

Rampazzi S., Danese G., Leporati F., Marabelli F.. A localized surface plasmon resonance-based portable instrument for quick on-site biomolecular detection. IEEE Transactions on Instrumentation and Measurement, 2016, 65(2): 317-327.

[17]

Khodadad I., Abedzadeh N., Lakshminarayan V., Saini S. S.. Low cost spectrometer and learning applications for exposing kids to optics. SPIE, 2015, 9793, 97932W-1–97932W–5.

[18]

McGonigle A. J. S., Wilkes T. C., Pering T. D., Willmott J. R., Cook J. M., Mims F. M., . Smartphone spectrometers. Sensors, 2018, 18(1): 223-1–223–15.

[19]

Liu Y., Chen S., Liu Q., Masson J. F., Peng W.. Compact multi-channel surface plasmon resonance sensor for real-time multi-analyte biosensing. Optics Express, 2015, 23(16): 20540-20548.

[20]

Whittaker D., Culshaw I.. Scattering-matrix treatment of patterned multilayer photonic structures. Physical Review B, 1999, 60(4): 2610-2618.

[21]

Hall R. C., Mittra R., Mitzner K. M.. Analysis of multilayered periodic structures using generalized scattering matrix theory. IEEE Transactions on Antennas and Propagation, 1988, 36(4): 511-517.

[22]

Chah S., Yi J., Zare R. N.. Surface plasmon resonance analysis of aqueous mercuric ions. Sensors and Actuators B: Chemical, 2004, 99(2): 216-222.

[23]

Zhang P., Chen Y. P., Wang W., Shen Y., Guo J. S.. Surface plasmon resonance for water pollutant detection and water process analysis. Trends in Analytical Chemistry, 2016, 85, 153-165.

[24]

Goldman L., Schafer A. I.. Goldman’s cecil medicine E-book, 2011, Oxford, UK: Elsevier Health Sciences, 1-2704.

[25]

Shcherbakov A. S., Arellanes A. O., Chavushyan V.. Optical spectrometer with acousto-optical dynamic grating for guillermo haro astrophysical observatory. International Journal of Astronomy & Astroph, 2013, 3(4): 376-384.

[26]

Blind N., Coarer E. L., Kern P., Gousset S.. Spectrographs for astrophotonics. Optics Express, 2017, 25(22): 27341-27369.

[27]

Cull E. C., Gehm M. E., McCain S. T., Guenther B. D., Brady D. J.. Multimodal optical spectrometers for remote chemical detection. SPIE, 2005, 5778, 376-383.

[28]

Kuo W. K., Hsu C. J.. Two-dimensional grating guided-mode resonance tunable filter. Optics Express, 2017, 25(24): 29642-29649.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/