Study on the Characters of Phase-Shifted Fiber Bragg Grating in Asymmetric Perturbation and Its Application in Fiber Laser Acoustic Sensor

Yanjie Zhao , Jiasheng Ni , Faxiang Zhang , Zhiqiang Song , Luyan Li , Ting Chen , Shuang Li

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (4) : 351 -357.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (4) : 351 -357. DOI: 10.1007/s13320-018-0510-0
Regular

Study on the Characters of Phase-Shifted Fiber Bragg Grating in Asymmetric Perturbation and Its Application in Fiber Laser Acoustic Sensor

Author information +
History +
PDF

Abstract

A π phase-shifted fiber Bragg grating theoretical model is established, and the effects of an asymmetric and symmetrical perturbation field on a phase-shifted fiber Bragg grating are investigated in this paper. The trends of wavelength shifting caused by effective refraction index of phase shift grating in symmetric and asymmetric acoustic field are investigated in detail. Then, the fiber laser acoustic sensors packaged in asymmetric and symmetrical structures are designed and tested, respectively. The results show that the acoustic response of the wavelength of the distributed feedback (DFB) fiber laser (FL) in an asymmetric packaging structure is much more sensitive than in that in the symmetrical structure. The sensor packaged in the asymmetrical structure has a better low frequency (0 Hz–500 Hz) performance and a higher sensitivity than that in the symmetrical structure, and the sensitivity is improved about 15 dB in average and 32.7 dB in maximum. It provides a new method to improve the sensitivity of the fiber acoustic sensor.

Keywords

Fiber acoustic sensor / phase-shifted fiber Bragg grating / asymmetric perturbation

Cite this article

Download citation ▾
Yanjie Zhao, Jiasheng Ni, Faxiang Zhang, Zhiqiang Song, Luyan Li, Ting Chen, Shuang Li. Study on the Characters of Phase-Shifted Fiber Bragg Grating in Asymmetric Perturbation and Its Application in Fiber Laser Acoustic Sensor. Photonic Sensors, 2017, 8(4): 351-357 DOI:10.1007/s13320-018-0510-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma L. N., Hu Y. M., Luo H., Hu Z. L.. DFB fiber laser hydrophone with flat frequency response and enhanced acoustic pressure sensitivity. IEEE Photonics Technology Letters, 2009, 21(17): 1280-1282.

[2]

Kirkendall C. K., Dandridge A.. Overview of high performance fiber-optic sensing. Journal of Physics D Applied Physics, 2004, 37(18): 197-216.

[3]

Foster S., Cranch G., Harrison J., Tikhomirov A., Miller G.. Distributed feedback fiber laser strain sensor technology. Journal of Lightwave Technology, 2017, 35(16): 3514-3530.

[4]

Liu W., Ma L. N., HU Z. L., Feng Y., Yang H. Y.. Study of Rayleigh-backscattering induced coherence collapse in an asymmetric DFB FL sensor. Photonic Sensors, 2016, 6(3): 209-213.

[5]

Zhao Y. J., Wang Q. P., Chang J., Ni J. S., Wang C., Sun Z. H., . Suppression of the intensity noise in DFB fiber lasers by self-injection locking. Laser Physics Letters, 2012, 9(10): 739-743.

[6]

Hou F. F., Yang M.. A novel dual-wavelength DFB fiber laser. Optik, 2013, 124(18): 3674-3677.

[7]

Loranger S., Tehranchi A., Winful H., Kashyap R.. Realization and optimization of phase-shifted distributed feedback fiber Bragg grating Raman lasers. Optica, 2018, 5(3): 295-302.

[8]

Ni J. S., Zhao Y. J., Wang C., Peng G. D., Liu T. Y., Chang J., . Research on linewidth characteristics and broadening mechanism of distributed feedback fiber laser. Acta Physica Sinica, 2012, 61(8): 084205.

[9]

Zhao Y. J., Wang Q. P., Chang J., Ni J. S., Wang C., Wang P. P., . Linewidth narrowing and polarization control of erbium-doped fiber laser by self-injection locking. Laser Physics, 2011, 21(12): 2108-2111.

[10]

Bucaro J. A., Dardy H. D.. Fiber optic hydrophone. The Journal of the Acoustical Society of America, 1997, 62(5): 1302-1304.

[11]

Hill D. J., Cranch G. A.. Gain in hydrostatic pressure sensitivity of coated fiber Bragg grating. Electronics Letters, 1999, 35(15): 1268-1269.

[12]

Zhang W. T., Liu Y. L., Li F., Xao H.. Fiber laser hydrophone based on double diaphragms: theory and experiment. Journal of Lightwave Technology, 2008, 26(10): 1349-1352.

[13]

Zhang J. Z., Li X. L., Chai Q., Hao Q. Q., Li Q., Sun W. M., . Hydrophone based on intensity modulated DFB fiber laser. in Proceeding of IEEE Sensors, Kona, 2010, USA: HI, 315-317.

[14]

Azmi A. I., Leung I., Chen X. B., Zhou S. L., Zhu Q., Gao K., . Fiber laser based hydrophone system. Photonic Sensors, 2011, 1(3): 210-221.

[15]

Kersey A. D., Koo K. P., Davis M. A.. Fiber optic Bragg grating laser sensors. SPIE, 1994, 2292, 102-112.

[16]

Koo K. P., Kersey A. D.. Bragg grating based laser sensors systems with interferometric interrogation and wavelength division multiplexing. Journal of Lightwave Technology, 1995, 13(7): 1243-1249.

[17]

Foster S., Tikhomirov A., Milnes M., Velzen J. V., Hardy G.. A fiber laser hydrophone. SPIE, 2005, 5855, 627-630.

[18]

Foster S., Tikhomirov A., Velzen J. V.. Towards a high performance fiber laser hydrophone. Journal of Lightwave Technology, 2011, 29(9): 1335-1342.

[19]

Unnikrishnan K. C., Venugopalan P.. Pressure compensated fiber laser hydrophone: modeling and experimentation. Journal of the Acoustical Society of America, 2013, 134(4): 2710-2718.

[20]

Launay F. X., Lardat R., Bouffaron R., Roux G., Doisy M.. Static pressure and temperature compensated wideband fiber laser hydrophone. SPIE, 2013, 8794, 87940.

[21]

Vivek K., Rajesh R., Sreehari C. V., Shamkumar S., Shajahan K., Praveen T. V., . A new approach of large diameter polymer-coated fiber laser hydrophone. Journal of Lightwave Technology, 2017, 35(19): 4097-4104.

[22]

Agrawal P. G., Radic S.. Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing. Photonics Technology Letters IEEE, 1994, 6(8): 995-997.

[23]

Tehranchi A., Loranger S., Kashyap R.. Engineered pi-phase-shifted fiber Bragg gratings for efficient distributed feedback Raman fiber lasers. IEEE Journal of Quantum Electronics, 2018, 54(3): 1-7.

[24]

Makino T., Glinski J.. Transfer matrix analysis of the amplified spontaneous emission of DFB semiconductor laser amplifiers. IEEE Journal of Quantum Electronics, 1988, 24(8): 1507-1518.

[25]

Løvseth S. W., Bløtekjær K.. Contributions to wavelength shifts of DFB fiber lasers used as acoustic sensors in air. SPIE, 1998, 3483, 69-73.

[26]

Ibsen M., Ronnekleiv E., Cowle G. J., Berendt M. O., Hadeler O., Zervas M. N., . Robust high power (>20 mW) all-fibre DFB lasers with unidirectional and truly single polarisation outputs. in Proceeding of Conference of Lasers and Electro-Optics, Baltimore, 1999, USA: MD, 245-246.

[27]

Poladian L., Ashton B., Padden W. E., Michie A., Marra C.. Characterisation of phase-shifts in gratings fabricated by over-dithering and simple displacement. Optical Fiber Technology, 2003, 9(4): 173-188.

[28]

Cranch G. A., Flockhart G. M. H., Kirkendall C. K.. Distributed feedback fiber laser strain sensors. IEEE Sensors Journal, 2008, 8(7): 1161-1172.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/