Effect of Spectral Power Distribution on the Resolution Enhancement in Surface Plasmon Resonance

Cuixia Zhou , Guo Xia , Guodong Wang , Shiqun Jin

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (4) : 310 -319.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (4) : 310 -319. DOI: 10.1007/s13320-018-0507-8
Regular

Effect of Spectral Power Distribution on the Resolution Enhancement in Surface Plasmon Resonance

Author information +
History +
PDF

Abstract

For wavelength interrogation based surface plasmon resonance (SPR) sensors, refractive index (RI) resolution is an important parameter to evaluate the performance of the system. In this paper, we explore the influence of spectral power distribution on the refractive index (RI) resolution of the SPR system by simulating the reflectivity curve corresponding to the different incident angles of the classical Kretschmann structure and several different spectral power distribution curves. A wavelength interrogation based SPR system is built, and commercial micro-spectrometers (USB2000 and USB4000) are used as the detection components, respectively. The RI resolutions of the SPR system in these two cases are measured, respectively. Both theoretical and experimental results show that the spectral power distribution has a significant effect on the RI resolution of the SPR system.

Keywords

Instrumentation / measurement / metrology / surface plasmon / resonance

Cite this article

Download citation ▾
Cuixia Zhou, Guo Xia, Guodong Wang, Shiqun Jin. Effect of Spectral Power Distribution on the Resolution Enhancement in Surface Plasmon Resonance. Photonic Sensors, 2017, 8(4): 310-319 DOI:10.1007/s13320-018-0507-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ritchie R. H.. Plasma losses by fast electrons in thin films. Physical Review, 1957, 106(5): 874-881.

[2]

Shushama K. N., Rana M. M., Inum R., Hossain M. B.. Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: simulation analysis. Optics Communications, 2017, 383, 186-190.

[3]

Shankaran D. R., Gobi K. V., Miura N.. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors & Actuators B: Chemical, 2007, 121(1): 158-177.

[4]

Yanase Y., Hiragun T., Ishii K., Kawaguchi T., Yanase T., Kawai M., . Surface plasmon resonance for cell-based clinical diagnosis. Sensors, 2014, 14(3): 4948-4959.

[5]

Yakes B. J., Deeds J., White K., Degrasse S. L.. Evaluation of surface plasmon resonance biosensors for detection of tetrodotoxin in food matrices and comparison to analytical methods. Journal of Agricultural & Food Chemistry, 2011, 59(3): 839-846.

[6]

Weiss M. N., Srivastava R., Groger H., Lo P., Luo S. F.. A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors. Sensors & Actuators A: Physical, 1995, 51(2–3): 211-217.

[7]

Salamon Z., Macleod H. A., Tollin G.. Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: applications to biological systems. Biochimicaet Biophysica Acta (BBA)–Reviews on Biomembranes, 1997, 1331(2): 117-129.

[8]

Notcovich A. G., Zhuk V., Lipson S. G.. Surface plasmon resonance phase imaging. Applied Physics Letters, 2000, 76(13): 1665-1667.

[9]

Palumbo M., Pearson C., Nagel J., Petty M. C.. A single chip multi-channel surface plasmon resonance imaging system. Sensors & Actuators B: Chemical, 2003, 90(1): 264-270.

[10]

Ruffato G., Pasqualotto E., Sonato A., Zacco G., Silvestri D., Morpurgo M., . Implementation and testing of a compact and high-resolution sensing device based on grating-coupled surface plasmon resonance with polarization modulation. Sensors & Actuators B: Chemical, 2013, 185(8): 179-187.

[11]

Piliarik M., Homola J.. Surface plasmon resonance (SPR) sensors: approaching their limits. Optics Express, 2009, 17(19): 16505-16517.

[12]

Homola J.. On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sensors & Actuators B: Chemical, 1997, 41(1): 207-211.

[13]

Naraoka R., Okawa H., Hashimoto K., Kajikawa K.. Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration. Optics Communications, 2005, 248(1–3): 249-256.

[14]

Maurya J. B., Prajapati Y. K., Singh V., Saini J. P., Tripathi R.. Improved performance of the surface plasmon resonance biosensor based on graphene or MoS2, using silicon. Optics Communications, 2016, 359, 426-434.

[15]

Zonios G.. Noise and stray light characterization of a compact CCD spectrophotometer used in biomedical applications. Applied Optics, 2010, 49(2): 163-169.

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/