High Power Linearly Polarized Raman Fiber Laser With Stable Temporal Output

Jiaxin Song , Hanshuo Wu , Jun Ye , Jiangming Xu , Hanwei Zhang , Pu Zhou

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 43 -48.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 43 -48. DOI: 10.1007/s13320-018-0506-9
Regular

High Power Linearly Polarized Raman Fiber Laser With Stable Temporal Output

Author information +
History +
PDF

Abstract

We demonstrate a high power linearly polarized Raman fiber laser (RFL) pumped by an amplified spontaneous emission (ASE) source. Temporal-stable operation of RFL could be ensured owing to the employment of ASE, which mitigates the inherent intensity noise compared with the classic scheme adopting laser oscillator as pump source. In this experiment, the RFL has up to 119.5 W output power, with central wavelength of 1129.2 nm, and full width at half maximum (FWHM) linewidth of about 4.18 nm. The polarization extinction ratio (PER) of the Raman laser is about 23 dB. Moreover, this laser has excellent long-term and short-term stabilities in terms of the output power and time domain.

Keywords

Raman fiber laser / amplified spontaneous emission / linearly polarized

Cite this article

Download citation ▾
Jiaxin Song, Hanshuo Wu, Jun Ye, Jiangming Xu, Hanwei Zhang, Pu Zhou. High Power Linearly Polarized Raman Fiber Laser With Stable Temporal Output. Photonic Sensors, 2018, 9(1): 43-48 DOI:10.1007/s13320-018-0506-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Supradeepa V. R., Feng Y., Nicholson J. W.. Raman fiber lasers. Journal of Optics, 2017, 19(2): 023001.

[2]

El-Taher A. E., Ania-Castañón J. D., Karalekas V., Harper P.. High efficiency supercontinuum generation using ultra-long Raman fiber cavities. Optics Express, 2009, 17(20): 17909-17915.

[3]

Taylor L. R., Feng Y., Calia D. B.. 50W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers. Optics Express, 2010, 18(8): 8540-8555.

[4]

Wang X., Zhou P., Miao Y., Zhang H. W., Xiao H., Wang X. L., . Raman fiber laser-pumped high-power, efficient Ho-doped fiber laser. Journal of the Optical Society of America B, 2014, 31(10): 2476-2479.

[5]

Baac H. W., Uribe-Patarroyo N., Bouma B. E.. High-energy pulsed Raman fiber laser for biological tissue coagulation. Optics Express, 2014, 22(6): 7113-7123.

[6]

Zhang H. W., Zhou P., Wang X., Du X. Y., Xiao H., Xu X. J.. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation. Optics Express, 2015, 23(13): 17138-17144.

[7]

Wang Z. N., Rao Y. J., Wu H., Li P. Y., Jiang Y., Jia X. H., . Long-distance fiber-optic point-sensing systems based on random fiber lasers. Optics Express, 2012, 20(16): 17695-17700.

[8]

Jia X. H., Rao Y. J., Wang Z. N., Zhang W. L., Yuan C. X., Yan X. D., . Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application. Optics Express, 2013, 21(18): 21208-21217.

[9]

Skubchenko S. A., Vyatkin M. Y., Gapontsev D. V.. High-power CW linearly polarized all-fiber Raman laser. IEEE Photonics Technology Letters, 2004, 16(4): 1014-1016.

[10]

Zhang H. W., Zhou P., Xiao H., Xu X. J.. Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power. Laser Physics Letters, 2014, 11(7): 075104.

[11]

Feng Y., Taylor L., Calia D. B.. Multiwatts narrow linewidth fiber Raman amplifiers. Optics Express, 2008, 16(15): 10927-10932.

[12]

Georgiev D., Gapontsev V. P., Dronov A. G., Vyatkin M. Y., Rulkov A. B., Popov S. V., . Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm. Optics Express, 2005, 13(18): 6772-6776.

[13]

Bednyakova A. E., Gorbunov O. A., Politko M. O., Kablukov S. I., Smirnov S. V., Churkin D. V., . Generation dynamics of the narrowband Yb-doped fiber laser. Optics Express, 2013, 21(7): 8177-8182.

[14]

Schroder J., Coen S.. Observation of high-contrast, fast intensity noise of a continuous wave Raman fiber laser. Optics Express, 2009, 17(19): 16444-16449.

[15]

Wang J. H., Zhang L., Zhou J., Si L., Chen J. B., Feng Y.. High power linearly polarized Raman fiber laser at 1120 nm. Chinese Optics Letters, 2012, 10(2): 021406.

[16]

Zhang L., Jiang H. W., Yang X. Z., Pan W. W., Cui S. Z., Feng Y.. Nearly-octave wavelength tuning of a continuous wave fiber laser. Scientific Reports, 2017, 7, 42611.

[17]

Wang Z. N., Wu H., Fan M. Q., Rao Y. J., Jia X. H., Zhang W. L.. Third-order random lasing via Raman gain and Rayleigh feedback within a half-open cavity. Optics Express, 2013, 21(17): 20090.

[18]

Loh W. H., de Sandro J. P.. Suppression of self-pulsing behavior in erbium-doped fiber lasers with resonant pumping: experimental results. Optics Letters, 1996, 21(18): 1475-1477.

[19]

Li J. L., Ueda K. I., Musha M., Shirakawa A.. Residual pump light as a probe of self-pulsing instability in an ytterbium-doped fiber laser. Optics Letters, 2006, 31(10): 1450-1452.

[20]

Tang Y. L., Xu J. Q.. Effects of excited-state absorption on self-pulsing in Tm3+-doped fiber lasers. Journal of the Optical Society of America B, 2010, 27(2): 179-186.

[21]

Fludger C. R. S., Handerek V., Mears R. J.. Pump to signal RIN transfer in Raman fiber amplifiers. Journal of Lightwave Technology, 2001, 19(8): 1140-1148.

[22]

Krause M., Cierullies S., Renner H., Brinkmeyer E.. Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers. Optics Communications, 2006, 260(2): 656-661.

[23]

Xu J. M., Huang L. J., Leng J. Y., Xiao H., Guo S. F., Zhou P., . 1.01 kW superfluorescent source in all-fiberized MOPA configuration. Optics Express, 2015, 23(5): 5485-5490.

[24]

Ma P. F., Huang L., Wang X. L., Zhou P., Liu Z. J.. High power broadband all fiber superfluorescent source with linear polarization and near diffraction-limited beam quality. Optics Express, 2016, 24(2): 1082-1088.

[25]

Xu J. M., Lou Z. K., Ye J., Wu J., Leng J. Y., Xiao H., . Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects. Optics Express, 2017, 25(5): 5609-5617.

[26]

Wang P., Clarkson W. A.. High-power, single-mode, linearly polarized, ytterbium-doped fiber superfluorescent source. Optics Letters, 2007, 32(17): 2605-2607.

[27]

Iwatsuki K.. Excess noise reduction in fiber gyroscope using broader spectrum linewidth Er-doped superfluorescent fiber laser. IEEE Photonics Technology Letters, 1991, 3(3): 281-283.

[28]

Nayaks J.. Fiber-optic gyroscopes: from design to production [Invited]. Applied Optics, 2011, 50(25): E152-E161.

[29]

Burns W., Chen C. L., Moeller R.. Fiber-optic gyroscopes with broad-band sources. Journal of Lightwave Technology, 1983, 1(1): 98-105.

[30]

Levit B., Bekker A., Smulakovsky V., Fischer B.. Amplified-spontaneous-emission pumped raman fiber laser. Proceeding of Conference on Lasers & Electro-optics, 2008 563-565.

[31]

Xu J. M., Liu W., Leng J. Y., Xiao H., Guo S. F., Zhou P., . Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW. Optics Letters, 2015, 40(13): 2973-2976.

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/