Gas Absorption Center-Based Wavelength Calibration Technique in QEPAS System for SNR Improvement
Zongliang Wang , Jun Chang , Qi Liu , Cunwei Tian , Qinduan Zhang
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (4) : 358 -366.
Gas Absorption Center-Based Wavelength Calibration Technique in QEPAS System for SNR Improvement
A simple and effective wavelength calibration scheme is proposed in a quartz enhanced photoacoustic spectroscopy (QEPAS) system for trace gas detection. A reference gas cell is connected an InGaAs photodetector for detecting the absorption intensity peak caused by the gas to calibrate the gas absorption center using distributed feedback laser diode (DFB-LD) with sawtooth wave driver current. The gas absorption wavelength calibration and gas sensing operations are conducted at a special internal to eliminate the wavelength shift of DFB-LD caused by the ambient fluctuations. Compared with the conventional wavelength modulation spectroscopy (WMS), this method uses a lower lock-in amplifier bandwidth and averaging algorithm to improve signal noise ratio (SNR). Water vapor is chosen as a sample gas to evaluate its performance. In the experiments, the impact of sawtooth wave frequency and lock-in amplifier bandwidth on the harmonic signal is analyzed, and the wavelength-calibration technique-based system achieves a minimum detection limit (MDL) of 790 ppbv and SNR with 13.4 improvement factor compared with the conventional WMS system.
QEPAS / DFB-LD / wavelength calibration / fiber gas sensor
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
/
| 〈 |
|
〉 |