Gas Absorption Center-Based Wavelength Calibration Technique in QEPAS System for SNR Improvement

Zongliang Wang , Jun Chang , Qi Liu , Cunwei Tian , Qinduan Zhang

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (4) : 358 -366.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (4) : 358 -366. DOI: 10.1007/s13320-018-0502-0
Regular

Gas Absorption Center-Based Wavelength Calibration Technique in QEPAS System for SNR Improvement

Author information +
History +
PDF

Abstract

A simple and effective wavelength calibration scheme is proposed in a quartz enhanced photoacoustic spectroscopy (QEPAS) system for trace gas detection. A reference gas cell is connected an InGaAs photodetector for detecting the absorption intensity peak caused by the gas to calibrate the gas absorption center using distributed feedback laser diode (DFB-LD) with sawtooth wave driver current. The gas absorption wavelength calibration and gas sensing operations are conducted at a special internal to eliminate the wavelength shift of DFB-LD caused by the ambient fluctuations. Compared with the conventional wavelength modulation spectroscopy (WMS), this method uses a lower lock-in amplifier bandwidth and averaging algorithm to improve signal noise ratio (SNR). Water vapor is chosen as a sample gas to evaluate its performance. In the experiments, the impact of sawtooth wave frequency and lock-in amplifier bandwidth on the harmonic signal is analyzed, and the wavelength-calibration technique-based system achieves a minimum detection limit (MDL) of 790 ppbv and SNR with 13.4 improvement factor compared with the conventional WMS system.

Keywords

QEPAS / DFB-LD / wavelength calibration / fiber gas sensor

Cite this article

Download citation ▾
Zongliang Wang, Jun Chang, Qi Liu, Cunwei Tian, Qinduan Zhang. Gas Absorption Center-Based Wavelength Calibration Technique in QEPAS System for SNR Improvement. Photonic Sensors, 2017, 8(4): 358-366 DOI:10.1007/s13320-018-0502-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rasi S., Veijanen A., Rintala J.. Trace compounds of biogas from different biogas production plants. Energy, 2007, 32(8): 1375-1380.

[2]

Chen X., Chang J., Wang F. P., Wang Z. L., Wei W., Liu Y. Y., . A portable analog lock-in amplifier for accurate phase measurement and application in high-precision optical oxygen concentration detection. Photonic Sensors, 2017, 7(1): 27-36.

[3]

Niu X. G., Huang X., Zhao Z., Zhang Y. H., Huang C. C., Cui L.. The design and evaluation of a wireless sensor network for mine safety monitoring. in Proceeding of IEEE Global Telecommunications Conference, Washington, DC, USA, 2007 1291-1295.

[4]

Sun J. P.. Mine safety monitoring and control technology and system. Coal Science and Technology, 2010, 38(10): 1-4.

[5]

Allen M.. Diode laser absorption sensors for gas-dynamic and combustion flows. Measurement Science and Technology, 1998, 9(4): 545-562.

[6]

Liu Y., Koep E., Liu M. L.. A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition. Chemistry of Materials, 2005, 17(15): 3997-4000.

[7]

Brandt A. R., Heath G. A., Kort E. A., O’Sullivan F., Pétron G., Jordaan S. M., . Methane leaks from North American natural gas systems. Science, 2014, 343(6172): 733-735.

[8]

Wojtas J., Gluszek A., Hudzikowski A., Tittel F. K.. Mid-infrared trace gas sensor technology based on intracavity quartz-enhanced photoacoustic spectroscopy. Sensors, 2017, 17(3): 513-1-513-9.

[9]

Ma Y. F., He Y., Chen C., Yu X., Zhang J. B., Peng J. B., . Planar laser-based QEPAS trace gas sensor. Sensors, 2016, 16(7): 989-1-989-7.

[10]

Zhang Q. D., Chang J., Wang Q., Wang Z. L., Wang F. P., Qin Z. G.. Acousto-optic Q-switched fiber laser-based intra-cavity photoacoustic spectroscopy for trace gas detection. Sensors, 2018, 18(1): 42-1-42-8.

[11]

Wang Z., Geng J., Ren W.. Quartz-enhanced photoacoustic spectroscopy (QEPAS) detection of the ν7 band of ethylene at low pressure with CO2 interference analysis. Applied Spectroscopy, 2017, 71(8): 1834-1841.

[12]

Ba T. N., Triki M., Desbrosses G., Vicet A.. Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode. Review of Scientific Instruments, 2015, 86(2): 023111-1-023111-5.

[13]

Wu H., Dong L., Zheng H., Yu Y. J., Ma W. G., Zhang L., . Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring. Nature Communications, 2017, 8, 15331-1-15331-8.

[14]

Sim J. Y., Ahn C. G., Huh C., Chung K. H., Jeong E. J., Kim B. K.. Synergetic resonance matching of a microphone and a photoacoustic cell. Sensors, 2017, 17(4): 804-1-804-10.

[15]

Sampaolo A., Patimisco P., Giglio M., Vitiello M. S., Beere H. E., Ritchie D. A., . Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy. Sensors, 2016, 16(4): 439-1-439-8.

[16]

Zheng H. D., Dong L., Sampaolo A., Wu H. P., Patimisco P., Yin X. K., . Single-tube on-beam quartz-enhanced photoacoustic spectroscopy. Optics Letters, 2016, 41(5): 978-981.

[17]

Yanagawa T., Saito S., Yamamoto Y.. Frequency stabilization of 1.5 μm InGaAsP distributed feedback laser to NH3 absorption lines. Applied Physics Letters, 1984, 45(8): 826-828.

[18]

Gong P., Xie L., Qi X. Q., Wang R.. A QEPAS-based central wavelength stabilized diode laser for gas sensing. IEEE Photonics Technology Letters, 2015, 27(5): 545-548.

[19]

Wang G. S., Yi H. M., Cai T. D., Wang L., Tan T., Zhang W. J., . Research on the real-time measurement system based on QEPAS. Acta Physica Sinica, 2012, 61(12): 120701-1-120701-8.

[20]

Wang Q., Wang Z., Ren W.. Wavelength-stabilization-based photoacoustic spectroscopy for methane detection. Measurement Science and Technology, 2017, 28(6): 065102-1-065102-8.

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/