Composite Sinusoidal Nanograting With Long-Range SERS Effect for Label-Free TNT Detection

Cheng Xiao , Zhibin Chen , Mengze Qin , Dongxiao Zhang , Lei Fan

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (3) : 278 -288.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (3) : 278 -288. DOI: 10.1007/s13320-018-0497-6
Regular

Composite Sinusoidal Nanograting With Long-Range SERS Effect for Label-Free TNT Detection

Author information +
History +
PDF

Abstract

A composite one-dimensional (1D) Ag sinusoidal nanograting aiming at label-free surface enhanced Raman scattering (SERS) detection of TNT with robust and reproducible enhancements is discussed. 1D periodic sinusoidal SiO2 grating followed by Ag evaporation is proposed for the creation of reproducible and effective SERS substrate based on surface plasmon polaritons (SPPs). The optimal structure of 1D sinusoidal nanograting and its long-range SERS effect are analyzed by using the finite difference time domain (FDTD). Simulation SERS enhancement factor (EF) can be 5 orders of magnitude as possible. This SERS substrate is prepared by the interference photolithography technology, its SERS performance is tested by Rh6G detection experiments, and the actual test EF is about 104. The label-free SERS detection capacity of TNT is demonstrated in the experiment.

Keywords

Sinusoidal grating / surface plasmon polaritons / long-range SERS effect / label-free

Cite this article

Download citation ▾
Cheng Xiao, Zhibin Chen, Mengze Qin, Dongxiao Zhang, Lei Fan. Composite Sinusoidal Nanograting With Long-Range SERS Effect for Label-Free TNT Detection. Photonic Sensors, 2017, 8(3): 278-288 DOI:10.1007/s13320-018-0497-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang C., Yu C. X.. Analytical characterization using surface enhanced Raman scattering (SERS) and microfluidic sampling. Nanotechnology, 2015, 26(9): 1-26.

[2]

Li Q. L., Li B. W., Wang Y. Q.. Surface-enhanced Raman scattering microfluidic sensor. Rsc Advances, 2013, 3(32): 13015-13026.

[3]

Farcau C., Astilean S.. Periodically nanostructured substrates for surface enhanced Raman spectroscopy. Journal of Molecular Structure, 2014, 1073(1073): 102-111.

[4]

Holthoff E. L., Stratis-Cullum D. N., Hankus M. E.. A^nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced Raman scattering. Sensors, 2011, 11(3): 2700-2714.

[5]

Chang S., Ko H., Singamaneni S., Gunawidjaja R., Tsukruk V. V.. Nanoporous membranes with mixed nanoclusters for Raman-based label-freemonitoring of peroxide compounds. Analytical Chemistry, 2014, 81(14): 5740-5748.

[6]

Li C., Wu C. L., Zheng J. S., Lai J. P., Zhang C. L., Zhao Y. B., . LSPR^sensing of molecular biothiols based on noncoupled gold nanorods. Langmuir the Acs Journal of Surfaces & Colloids, 2010, 26(11): 9130-9135.

[7]

Charles D. E., Aheme D., Gara M., Ledwith D. M., Gunko Y. K., Kelly J. M., . Versatile solution phase triangular silver nanoplates for highly sensitive plasmon resonance sensing. Acs Nano, 2010, 4(1): 55-64.

[8]

Goh M. S., Lee Y. H., Pedireddy S., Phang I. Y., Tjiu W. W., Rui J. M., . A^chemical route to increase hot spots on silver nanowires for surface-enhanced Raman spectroscopy application. Langmuir the Acs Journal of Surfaces & Colloids, 2012, 28(40): 1444.

[9]

Fang Y. F., Cheng X. L., Zhang C. Y., Zhou Y.. Review on graphene based explosive sensors. Chinese Journal of Energetic Materials, 2014, 22(1): 116-123.

[10]

Petrov D. V., Zaripov A. R., Toropov N. A.. Enhancement of Raman scattering of a gaseous medium near the surface of a silver holographic grating. Optics Letters, 2017, 42(22): 4728-4731.

[11]

Chen L., Choo J.. Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis, 2008, 29(9): 1815-1828.

[12]

Johnson P. B., Christy R. W.. Optical constants of the noble metals. Physical Review B, 1972, 6(12): 4370-4379.

[13]

Tang J., Guo H., Chen M., Yang J. T., Tsoukalas D.. Wrinkled Ag nanostructured gratings towards single molecule detection by ultrahigh surface Raman scattering enhancement. Sensors & Actuators B^Chemical, 2015, 218, 145-151.

[14]

Banholzer M. J., Millstone J. E., Qin L., Mirkin C. A.. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chemical Society Reviews, 2008, 37(5): 885-897.

[15]

Ghaemi H. F., Thio T., Grupp D. E., Ebbesen T. W., Lezec H. J.. Surface plasmons enhance optical transmission through subwavelength holes. Physical Review B, 1998, 58(11): 6779-6782.

[16]

Gillibert R., Sarkar M., Bryche J. F., Moreau J., Besbes M., Barbillon G., . Directional surface enhanced Raman scattering on gold nano-gratings. Nanotechnology, 2016, 27(11): 115202.

[17]

Lee T. W., Gray S. K.. Subwavelength light bending by metal slit structures. Optics Express, 2005, 13(24): 9652-9659.

[18]

Taflove A., Hagness S. C.. Computational electrodynamics: the finite difference time domain method, 2005 1-839.

[19]

Kalachyova Y., Mares D., Lyutakov O., Kostejn M., Lapcak L., Svorcik V.. Surface plasmon polaritons on silver gratings for optimal SERS^response. Journal of Physical Chemistry C, 2015, 119(17): 9506-9512.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/