Mellin Transform-Based Correction Method for Linear Scale Inconsistency of Intrusion Events Identification in OFPS

Baocheng Wang , Dandan Qu , Qing Tian , Liping Pang

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (3) : 220 -227.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (3) : 220 -227. DOI: 10.1007/s13320-018-0486-9
Regular

Mellin Transform-Based Correction Method for Linear Scale Inconsistency of Intrusion Events Identification in OFPS

Author information +
History +
PDF

Abstract

For the problem that the linear scale of intrusion signals in the optical fiber pre-warning system (OFPS) is inconsistent, this paper presents a method to correct the scale. Firstly, the intrusion signals are intercepted, and an aggregate of the segments with equal length is obtained. Then, the Mellin transform (MT) is applied to convert them into the same scale. The spectral characteristics are obtained by the Fourier transform. Finally, we adopt back-propagation (BP) neural network to identify intrusion types, which takes the spectral characteristics as input. We carried out the field experiments and collected the optical fiber intrusion signals which contain the picking signal, shoveling signal, and running signal. The experimental results show that the proposed algorithm can effectively improve the recognition accuracy of the intrusion signals.

Keywords

Linear scale / OFPS / MT / BP neural network / spectral characteristics

Cite this article

Download citation ▾
Baocheng Wang, Dandan Qu, Qing Tian, Liping Pang. Mellin Transform-Based Correction Method for Linear Scale Inconsistency of Intrusion Events Identification in OFPS. Photonic Sensors, 2017, 8(3): 220-227 DOI:10.1007/s13320-018-0486-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qiu Z. Z., Zheng T., Qu H. Q., Pang L. P.. A new method based on CFAR and DE for OFPS. Photonic Sensors, 2016, 6(3): 261-267.

[2]

Liang W., Lu L. L., Zhang L. B.. Coupling relations and early-warning for ‘equipment chain’ in long-distance pipeline. Mechanical Systems and Signal Processing, 2013, 41(1–2): 335-347.

[3]

Bi F. K., Feng C., Qu H. Q., Zheng T.. Harmful intrusion detection algorithm of optical fiber pre-warning system based on correlation of orthogonal polarization signals. Photonic Sensors, 2017, 7(3): 226-233.

[4]

Liu K., Chai T. J., Liu T. G., Jiang J. F., Chen Q. N., Pan L., . Multi-area optical perimeter security system with quick invasion judgement algorithm. Journal of Optoelectronics Laser, 2015, 26(2): 288-294.

[5]

Hang L. J., He C. F., Wu B., Cai D. S., Song Y. R.. Research on novel distributed optical fiber pipeline leakage detection technology and location method. Acta Optica Sinica, 2008, 28(1): 123-127.

[6]

Zhu C. H., Qu Y. Z., Wang J. P.. The vibration signal recognition of optical fiber perimeter based on time-frequency features. Opto-Electronic Engineering, 2014, 41(1): 16-22.

[7]

Wang L., Guo Y. B., Sun T. G., Huo J. Y., Zhang L.. Signal recognition of the optical fiber vibration sensor based on two-level feature extraction. Proceeding of IEEE 8th International Congress on Image and Signal, 2015 1484-1488.

[8]

Mahmoud S. S., Visagathilagar Y., Katsifolis J.. Real-time distributed fiber optic sensor for security systems: performance, event classification and nuisance mitigation. Photonic Sensors, 2012, 2(3): 225-236.

[9]

Wang Z. Y., Pan Z. Q., Ye Q., Cai H. W., Qu R. H., Fang Z. J.. Fast pattern recognition based on frequency spectrum analysis used for intrusion alarming in optic fiber fence. Chinese Journal of Lasers, 2015, 42(4): 1-6.

[10]

Li H. F., Yin X. D., Liu J. Z., Zhang C. Z., Chen Y.. Intrusion signal recognition basing on optical fiber Bragg grating vibration sensor. Optical Communication Technology, 2012, 2, 12-14.

[11]

Wu H. J., Xiao S. K., Li X. Y., Wang Z. N., Xu J. W., Rao Y. J.. Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry (Φ-OTDR). Journal of Lightwave Technology, 2015, 33(15): 3156-3162.

[12]

Sun R., Zeng W. J.. Secure and robust image hashing via compressive sensing. Multedia Tools and Applications, 2014, 70(3): 1651-1665.

[13]

Xiao B., Ma J. F., Cui J. T.. Combined blur, translation, scale and rotation invariant image recognition by Radon and pseudo-Fourier-Mellin transforms. Patern Recogntion, 2012, 45(1): 314-321.

[14]

Dai X. C., Xie Q.. Research on image matching algorithm based on Fourier-Mellin transform. Infrared Technology, 2016, 38(10): 860-863.

[15]

Zhang S. W., Zhen S. C., Zhao X. L., Zhao S. T.. Recognition method of radar target using range profile. Systems Engineering and Electronics, 2001, 23(11): 48-51.

[16]

Cheng J. H., Gao G., Ding W. X., Ku X. S., Sun J. X.. An improved scheme for parameter estimation of G° distribution model in high-resolution SAR^images. Progress in Electromagnetics Research, 2013, 134, 23-46.

[17]

Yang J., Sarkar T. K., Antonik P.. Applying the Fourier-modified Mellin transform (FMMT) to Doppler-istorted waveforms. Digital Singal Processing, 2007, 17(6): 1030-1039.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/