Design and Analysis of 2D Photonic Crystal Based Biosensor to Detect Different Blood Components

Rajendran Arunkumar , Thinakaran Suaganya , Savarimuthu Robinson

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 69 -77.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 69 -77. DOI: 10.1007/s13320-018-0479-8
Regular

Design and Analysis of 2D Photonic Crystal Based Biosensor to Detect Different Blood Components

Author information +
History +
PDF

Abstract

In this paper, a photonic crystal ring resonator based bio sensor is designed to sense different blood constituents in blood in the wavelength range of 1530 nm‒1615 nm for biomedical applications. The blood constituents such as hemoglobin white blood cell, red blood cell, blood sugar, blood urea, albumin, serum bilirubin direct, and ammonia are sensed for the corresponding transmission output power, Q factor, and refractive index changes. As the blood constituent has unique refractive index, the resonant wavelength and output power are varied from one to another, which are used to identify the blood constituents.

Keywords

Photonic crystal / plane wave expansion (PWE) / finite difference time domain (FDTD) / biosensor / blood components

Cite this article

Download citation ▾
Rajendran Arunkumar, Thinakaran Suaganya, Savarimuthu Robinson. Design and Analysis of 2D Photonic Crystal Based Biosensor to Detect Different Blood Components. Photonic Sensors, 2018, 9(1): 69-77 DOI:10.1007/s13320-018-0479-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Joannopoulos J. D., Johnson S. G., Winn J. N., Meade R. D.. Photonic crystals molding the flow of light, 2008, NJ, USA: Princeton University Press Princeton, 1-304.

[2]

Hsiao F. L., Lee C.. Novel biosensor based on photonic crystal nano-ring resonator. Procedia Chemistry, 2009, 1(1): 417-420.

[3]

Sharma P., Sharan P.. Design of photonic crystal based ring resonator for detection of different blood constituents. Optics Communication, 2015, 348, 19-23.

[4]

Sharma P., Sharan P.. Photonic crystal based ring resonator sensor for detection of glucose concentration for biomedical application. International Journal of Emerging Technology and Advanced Engineering, 2014, 4(30): 702-706.

[5]

Lee M., Fauchet P. M.. Two-dimensional silicon photonic crystal based bio sensing platform for protein detection. Optics Express, 2007, 15(8): 4530-4535.

[6]

Friebel R. M., Dörschel K., Hahn A., Müller G.. Optical properties of circulating human blood in the wavelength range 400–2500 nm. Journal of Biomedical Optics, 1994, 4(1): 36-46.

[7]

Friebel M., Meinke M.. Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements. Journal of Biomedical Optics, 2005, 10(6): 064019-1–064019–5.

[8]

Roggan A., Friebel M., Dörschel K., Hahn A., Müller G.. Optical properties of circulating human blood in the wavelength range 400–2500 nm. Journal of Biomedical Optics, 1999, 1(1): 36-46.

[9]

Lindberg L. G., Öberg P. A.. Optical properties of blood in motion. Optical Engineering, 1993, 32(2): 253-257.

[10]

Enejder A. M. K., Swartling J., Aruna P., Engels S. A.. Influence of cell shape and aggregate formation on the optical properties of flowing whole blood. Applied Optics, 2003, 42(7): 1384-1394.

[11]

Lee V. S., Tarassenko L.. Absorption and multiple scattering by suspensions of aligned red blood cells. Journal of the Optical Society of America, 1993, 8(7): 1135-1141.

[12]

Bayer R., Çaglayan S., Günther B.. Discrimination between orientation and elongation of RBC in laminar flow by means of laser diffraction. SPIE, 1993, 2136, 105-113.

[13]

Fan X., White I. M., Shopova S. I., Zhu H., Suter J. D., Sun Y.. Sensitive optical biosensors for unlabeled targets: a review. Analytica Chimica Acta, 2008, 6(20): 8-26.

[14]

Boyd R. W., Heebner J. E.. Sensitive disk resonator photonic biosensor. Applied Optics, 2001, 18(31): 15742-5747.

[15]

White I. M., Fan X.. On the performance quantification of resonant Refractive index sensors. Optics Express, 2008, 16(2): 1020-1028.

[16]

Kang C., Phare C., Weiss S. M.. Photonic crystal defects with increased surface area for improved refractive index sensing. Proceeding of Conference on Laser and Electro Optics and Quantum Electronics and laser Science, 2010 1-2.

[17]

Yablonovitch E.. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(23): 2059-2062.

[18]

John S.. Strong localization of photons in certain disordered dielectric super lattices. Physical Review Letters, 1987, 58(20): 2486-2489.

[19]

Lee C., Thillaigovindan J., Radhakrishnan R.. Design and modeling of nano mechanical sensors using silicon 2-D photonic crystals. Journal of Light Wave Technology, 2008, 26(7): 839-846.

[20]

Robinson S., Nakkeeran R.. Photonic crystal ring resonator-based add drop filters: a review. SPIE, 2013, 52(6): 1-15.

[21]

Kuma V. D.. Analysis and simulations of photonic crystal components for optical communication, 2003, Helsinki, Finland: Helsinki University of Technology

[22]

Liu Y., Salemink H. W. M.. Photonic crystal-based all-optical on-chip sensor. Optics Express, 2012, 20(18): 19912-19920.

[23]

Shanthi K. V., Robinson S.. Two-dimensional photonic crystal based sensor for pressure sensing. Photonic Sensors, 2014, 4(3): 248-253.

[24]

Radhouene M., Chhipa M. K., Najjar M., Robinson S., Suthar B.. Novel design of ring resonator based temperature sensor using photonics technology. Photonic Sensors, 2017, 7(4): 311-316.

[25]

Zouache T., Hocini A., Harhouz A., Mokhtari R.. Design of pressure sensor based on two-dimensional photonic crystal. Acta Physica Polonica, 2017, 131(1): 68-70.

[26]

Robinson S., Nakkeeran R.. PC based optical salinity sensor for different temperatures. Photonic Sensors, 2012, 2(2): 187-192.

[27]

Hopman W. C. L., Pottier P., Yudistira D., Lith J. V., Lambeck P. V., Rue R. M. D. L., . Quasi-one-dimensional photonic crystal as a compact building block for refract metric optical sensors. IEEE Journal of Selected Topics in Quantum Electron, 2005, 11(1): 11-16.

[28]

Lee V. S., Tarassenko L.. Absorption and multiple scattering by suspensions of aligned red blood cells. Journal of the Optical Society of America, 1991, 8(7): 1135-1141.

[29]

Bayer R., Çaglayan S., Günther B.. Discrimination between orientation and elongation of RBC in laminar flow by means of laser diffraction. SPIE, 1994, 2136, 105-113.

[30]

Enejder A. M. K., Swartling J., Aruna P., Engels S. A.. Influence of cell shape and aggregate formation on the optical properties of flowing whole blood. Applied. Optics, 2003, 42(7): 1384-1394.

[31]

Lindberg L. G., Öberg P. A.. Optical properties of blood in motion. Optical Engineering, 1993, 32(2): 253-257.

[32]

Sharma P., Sharan P.. An analysis and design of photonic crystal based bio chip for detection of glycosuria. IEEE Sensor Journal, 2016, 15(10): 5569-5575.

[33]

Dharchana T., Sivanantharaja A., Selvendran S.. Design of pressure sensor using 2D photonic crystal. Advances in Natural and Applied Sciences, 2017, 11(7): 26-30.

[34]

Sharma V., Kalyani V. L.. Design two dimensional nanocavity photonic crystal biosensor detection in malaria. International Journal of Emerging Research in Management and Technology, 2017, 6(6): 16-20.

[35]

Robinson S., Nakkeeran R.. PCRR based bandpass filter for C and L+U bands of ITU-T G.694.2 CWDM systems. Optics and Photonics Journal, 2011, 1(3): 142-149.

[36]

Pelosi G., Coccioli R., Selleri S.. Quick finite elements for electromagnetic waves, 1997, Boston, London, England: Artech House, 1-289.

[37]

Taflove A., Hagness S. C.. Computational electrodynamics: the finite-difference time-domain method, 2005, Boston, London, England: Artech House, 1-1038.

[38]

Johnson S. G., Joannopoulos J. D.. Block-iterative frequency domain methods for Maxwell’s equation in a plane wave basis. Optics Express, 2000, 11(3): 173-190.

[39]

Guo S., Alloin S.. Simple plane wave implementation for photonic crystal calculation. Optics Express, 2003, 11(2): 167-175.

[40]

Scarmozzino R., Gopinath A., Pregla R., Helfert S.. Numerical techniques for modeling guided-wave photonic devices. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(1): 150-162.

[41]

Loncar M., Vuckovic´ J., Scherer A.. Methods for controlling positions of guided modes of photonic-crystal waveguides. Optical Society of America, 2001, 18(9): 1362-1368.

[42]

Guo S. P., Albin´ S., Scherer A.. Numerical techniques for excitation and analysis of defect modes in photonic crystals. Optical Society of America, 2003, 11(9): 1080-1089.

[43]

Akahane Y., Asano T., Song B. S., Noda S.. High-Q photonic nano cavity in a two dimensional photonic crystal. Nature, 2003, 425, 944-947.

[44]

DellOlio F., Ciminelli C., Conteduca D., Armenise M. N.. Effect of fabrication tolerances on the performance of two dimensional polymer photonic crystal channel drop filter: a theoretical investigation based on the finite element method. Optical Engineering, 2013, 52(9): 097104-1–097104–7.

[45]

Radhouene M., Chhipa M. K., Najjar M., Robinson S., Suthar B.. Novel design of ring resonator based temperature sensor using photonics technology. Photonic Sensors, 2017, 7(4): 1-6.

[46]

Mallika C. S., Bahaddur I., Srikanth P. C., Sharan P.. Photonic crystal ring resonator structure for temperature measurement. Optik, 2015, 126(20): 2252-2255.

[47]

Mai T. T., Hsiao F. L., Lee C. K., Xiang W. F., Chen C. C., Choi W. K.. Optimization and comparison of photonic crystal resonators for silicon micro cantilever sensors. Sensors and Actuators A: Physical, 2010, 165, 16-25.

[48]

Li B., Lee C. K.. NEMS diaphragm sensors integrated with triple-nano-ring resonator. Sensors and Actuators A: Physical, 2011, 172, 61-68.

[49]

Sreenivasulu T., Rao V., Badrinarayana T., Hegde G. K., Srinivas T.. Photonic crystal ring resonator based force sensor: design and analysis. Optik, 2018, 155, 111-120.

[50]

Olyaee S., Bahabady A. M.. Two-curve-shaped biosensor using photonic crystal nano-ring resonators. Journal of Nanostructures, 2014, 4, 303-308.

[51]

Huang L. J., Tian H. P., Yang D. Q., Zhou J., Liu Q., Zhang P., . Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator. Optics Communication, 2014, 332, 42-49.

[52]

Olyaee S., Bahabady A. M.. Designing a novel photonic crystal nano-ring resonator for biosensor application. Optical & Quantum Electronics, 2015, 47, 1881-1888.

[53]

Harhouz A., Hocini A.. Design of high-sensitive biosensor based on cavity-waveguides coupling in 2D photonic crystal. Journal of Electromagnic Wave Applications, 2015, 29(5): 659-667.

[54]

Hocini A., Harhouz A.. Modeling and analysis of the temperature sensitivity in two dimensional photonic crystal microcavity. Journal of Nanophotonics, 2016, 10(1): 016007-016010.

[55]

Arafa S., Bouchemat M., Bouchemat T., Benmerkhi A., Hocini A.. Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection. Optics Communication, 2017, 384, 93-100.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/