Strong Influence of Temperature and Vacuum on the Photoluminescence of In0.3Ga0.7As Buried and Surface Quantum Dots

Guodong Wang , Huiqiang Ji , Junling Shen , Yonghao Xu , Xiaolian Liu , Ziyi Fu

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (3) : 213 -219.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (3) : 213 -219. DOI: 10.1007/s13320-018-0475-z
Regular

Strong Influence of Temperature and Vacuum on the Photoluminescence of In0.3Ga0.7As Buried and Surface Quantum Dots

Author information +
History +
PDF

Abstract

The strong influences of temperature and vacuum on the optical properties of In0.3Ga0.7As surface quantum dots (SQDs) are systematically investigated by photoluminescence (PL) measurements. For comparison, optical properties of buried quantum dots (BQDs) are also measured. The line-width, peak wavelength, and lifetime of SQDs are significantly different from the BQDs with the temperature and vacuum varied. The differences in PL response when temperature varies are attributed to carrier transfer from the SQDs to the surface trap states. The obvious distinctions in PL response when vacuum varies are attributed to the SQDs intrinsic surface trap states inhibited by the water molecules. This research provides necessary information for device application of SQDs as surface-sensitivity sensors.

Keywords

Surface quantum dots / photoluminescence / temperature / vacuum / InGaAs

Cite this article

Download citation ▾
Guodong Wang, Huiqiang Ji, Junling Shen, Yonghao Xu, Xiaolian Liu, Ziyi Fu. Strong Influence of Temperature and Vacuum on the Photoluminescence of In0.3Ga0.7As Buried and Surface Quantum Dots. Photonic Sensors, 2017, 8(3): 213-219 DOI:10.1007/s13320-018-0475-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Walker A. W., Hechelmann S., Karcher C., Hohn O., Went C., Niemeyer M., . Nonradiative lifetime extraction using power-dependent relative photoluminescence of III-V semiconductor double-heterostructures. Journal of Applied Physics, 2016, 119(15): 155702-1–155702-10.

[2]

Saito H., Nishi K., Sugou S.. Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 μm emission. Applied Physics Letters, 1998, 73(19): 2742-2744.

[3]

Wang G. D., Liang B. L., Juang B. C., Das A., Debnath M. C., Huffaker D. L., . Comparative study of photoluminescence from In0.3Ga0.7As/GaAs surface and buried quantum dots. Nanotechnology, 2016, 27(46): 465701-1–465701-6.

[4]

Chettri D., Singh T. J., Singh K. J.. InAs/GaAs quantum dot solar cell. International Journal of Electronics, Electrical and Computational System, 2017, 6(3): 221-224.

[5]

Utrilla A. D., Reyes D. F., Llorens J. M., Artacho I., Ben T., Gonzalez D., . Thin GaAsSb capping layers for improved performance of InAs/GaAs quantum dot solar cells. Solar Energy Materials & Solar Cells, 2017, 159, 282-289.

[6]

Sablon K., Little J., Vagidov N., Li Y., Mitin V., Sergeev A.. Conversion of above- and below bandgap photons via InAs quantum dot media embedded into GaAs solar cell. Applied Physics Letters, 2014, 104(25): 253904-1–253904-5.

[7]

Shi B., Zhu S., Li Q., Wan Y. T., Hu E. L., Lau K. M.. Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon. ACS Photonics, 2017, 4, 204-210.

[8]

Gao F., Luo S., Ji H. M., Yang X. G., Yang T.. Enhanced performance of tunable external-cavity 1.5 μm InAs/InP quantum dots lasers using facet coating. Applied Optics, 2015, 54(3): 472-476.

[9]

Zeghuzi A., Schmeckebier H., Stubenrauch M., Meuer C., Schubert C., Bunge C. A., . 25 Gbits differential phase-shift-keying signal generation using directly modulated quantum dot semiconductor optical amplifiers. Applied Physics Letters, 2015, 106, 213501-1–213501-4.

[10]

Chen S. M., Li W., Zhang Z. Y., Childs D., Zhou K. J., Orchard J., . GaAs-based superluminescent light emitting diodes with 290 nm emission bandwidth by using hybrid quantum well/quantum dot structures. Nanoscale Research Letters, 2015, 10(1): 1-8.

[11]

Angelis R. D., Casalboni M., Matteis F. D., Hatami F., Masselink W. T., Zhang H., . Chemical sensitivity of InP/In0.48Ga0.52P surface quantum dots studied by time-resolved photoluminescence spectroscopy. Journal of Luminescence, 2015, 168, 54-58.

[12]

Milla M. J., Ulloa J. M., Guzman A.. Strong Influence of the Humidity on the electrical properties of InGaAs surface quantum dots. ACS Applied Materials & Interfaces, 2014, 6(9): 6191-6195.

[13]

Angelis R. D., Amico L. D., Casalboni M., Hatami F., Masselink W. T., Prosposito P.. Photoluminescence sensitivity to methanol vapours of surface InP quantum dots: effect of dot size and coverage. Sensors & Actuators B: Chemical, 2013, 189(2): 113-117.

[14]

Liang B. L., Wang Z. M., Mazur Y. I., Seydmohamadi S., Ware M. E., Salamo G. J.. Tuning the optical performance of surface quantum dots in InGaAs/GaAs hybrid structures. Optics Express, 2007, 15(3): 8157-8162.

[15]

Zhao Z. X., Laghumavarapu R. B., Simmonds P. J., Ji H. M., Liang B. A., Huffaker D. L.. Photoluminescence study of the effect of strain compensation on InAs/AlAsSb quantum dots. Journal of Crystal Growth, 2015, 425, 321-315.

[16]

Vurgaftman I., Meyer J. R., Ram-Mohan L. R.. Band parameters for III-V compound semiconductors and their alloys. Journal of Applied Physics, 2001, 89(11): 5815-5875.

[17]

Lubyshev D. I., Gonzalez-Borrero P. P., Marega E., Petitprez E., Scala N. L., Basmaji P.. Exciton localization and temperature stability in self-organized InAs quantum dots. Applied Physics Letters, 1996, 68(2): 205-207.

[18]

Xu Z. Y., Lu Z. D., Yuan Z. L., Yang X. P., Zheng B. Z., Xu J. Z., . Thermal activation and thermal transfer of localized excitons in InAs self-organized quantum dots. Superlattices and Microstructures, 1998, 23(2): 381-387.

[19]

Wang J. Z., Yang Z., Yang C. L.. Photoluminescence of InAs quantum dots grown on GaAs surface. Applied Physics Letters, 2000, 77(18): 2837-2839.

[20]

Milla M. J., Ulloa J. M., Guzman A.. Strong influence of the humidity on the electrical properties of InGaAs surface quantum dots. ACS Applied Materials & Interfaces, 2014, 6(9): 6191-6195.

[21]

Milla M. J., Ulloa J. M., Guzman A.. Photoexcited induced sensitivity of InGaAs surface QDs to environment. Nanotechnology, 2014, 25(44): 445501-1–445501-6.

[22]

Angelis R. D., Casalboni M., Matteis F. D., Hatami F., Masselink W. T., Zhang H., . Chemical sensitivity of InP/In0.48Ga0.52P surface quantum dots studied by time-resolved photoluminescence spectroscopy. Journal of Luminescence, 2015, 168, 54-58.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/