Detection of Ethanol Using a Tunable Interband Cascade Laser at 3.345 μm

Hui Gao , Liang Xie , Ping Gong , Hui Wang

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (4) : 303 -309.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (4) : 303 -309. DOI: 10.1007/s13320-018-0471-3
Regular

Detection of Ethanol Using a Tunable Interband Cascade Laser at 3.345 μm

Author information +
History +
PDF

Abstract

With the progress of the laser manufacturing technology, trace gas sensors based on tunable interband cascade lasers (ICLs) and quantum cascade lasers (QCLs) have been widely used to detect organic compounds with high sensitivity. Compared with overtone and combination bands in the near infrared region, for many species, the intensities of fundamental rotational-vibrational absorption bands in the mid-infrared region are much stronger. In this paper, we demonstrate an ethanol sensor using a room-temperature continuous-wave (CW) tunable ICL laser as a light source to detect ethanol vapor concentration with high sensitivity. Combined with the first harmonic (1f) normalized second harmonic (2f) wavelength modulation spectroscopy (WMS) technology, the characteristics of the harmonics of the system are analyzed, and the amplitude of the first harmonic decrease with an increased concentration of ethanol has been demonstrated both theoretically and experimentally. As a result, a detection limitation of 28 ppb is achieved.

Keywords

Ethanol sensor / interband cascade lasers / wavelength modulation spectroscopy

Cite this article

Download citation ▾
Hui Gao, Liang Xie, Ping Gong, Hui Wang. Detection of Ethanol Using a Tunable Interband Cascade Laser at 3.345 μm. Photonic Sensors, 2017, 8(4): 303-309 DOI:10.1007/s13320-018-0471-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rodionov Y. V., Keppen O. I., Sukhacheva M. V.. A photometric assay for ethanol. Applied Biochemistry and Microbiology, 2002, 38(4): 395-396.

[2]

Chen Y. S., Huang J. H.. Arrayed CNT-Ni nanocomposites grown directly on Si substrate for amperometric detection of ethanol. Biosens Bioelectron, 2010, 26(1): 207-212.

[3]

Shkotova L. V., Soldatkin A. P., Gonchar M. V., Schuhmann W., Dzyadevych S. V.. Amperometric biosensor for ethanol detection based on alcohol oxidase immobilised within electrochemically deposited Resydrol film. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2006, 26(2–3): 411-414.

[4]

Schuetz M., Bufton J., Prasad C. R.. A mid-IR DIAL system using interband cascade laser diodes. in Proceeding of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2007 1-2.

[5]

Kubicki J., Mlynczak J., Kopczynski K.. Application of modified difference absorption method to stand-off detection of alcohol in simulated car cabins. Journal of Applied Remote Sensing, 2013, 7(8): 1-13.

[6]

Idwasi P. O., Small G. W., Combs R. J., Knapp R. B., Kroutil R. T.. Multiple filtering strategy for the automated detection of ethanol by passive Fourier transform infrared spectrometry. Applied Spectroscopy, 2001, 55(11): 1544-1552.

[7]

Tarumi T., Small G. W., Combs R. J., Kroutil R. T.. Remote detection of heated ethanol plumes by airborne passive Fourier transform infrared spectrometry. Applied Spectroscopy, 2003, 57(11): 1432-1441.

[8]

Garrigues J. M., Perez-Ponce A., Garrigues S., Guardia M. D. L.. Direct determination of ethanol and methanol in liquid samples by means of vapor phase-Fourier transform infrared spectrometry. Vibrational Spectroscopy, 1997, 15(2): 219-228.

[9]

Nadezhdinskii A., Berezin A., Bugoslavsky Y., Ershov O., Kutnyak V.. Application of near-IR diode lasers for measurement of ethanol vapor. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 1999, 55(10): 2049-2055.

[10]

Jie S., Tang Q. J., Cheng C., Li Z. Y.. Remote detection of alcohol concentration in vehicle based on TDLAS. in Proceeding of Symposium on Photonics & Optoelectronic, 2010 1-3.

[11]

Geng H., Liu J. G., Zhang Y. J., Kan R. F., Xu Z. Y., Yao L., . Ethanol vapor measurement based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2014, 63(4): 114-119.

[12]

Hodgkinson J., Tatam R. P.. Optical gas sensing: a review. Measurement Science and Technology, 2103, 24(1): 012004.

[13]

Wang C. J., Sahay P.. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors, 2009, 9(10): 8230-8262.

[14]

Kluczynski P., Lundqvist S., Belahsene S., Rouillard Y., Nähle L., Fischer M., . Detection of propane using tunable diode laser spectroscopy at 3.37 μm. Applied Physics B, 2012, 108(1): 183-188.

[15]

Zhang L. F., Wang F., Yu L. B., Yan J. H., Cen K. F.. The research for trace ammonia escape monitoring system based on tunable diode laser absorption spectroscopy. Spectroscopy and Spectral Analysis, 2015, 35(6): 1639-1642.

[16]

Andersson A. K., Kron J., Castren M., Athlin A. M., Hok B., Wiklund L.. Assessment of the breath alcohol concentration in emergency care patients with different level of consciousness. Scandinavian Journal of Trauma Resuscitation & Emergency Medicine, 2015, 23(1): 1-9.

[17]

Capasso F.. High-performance midinfrared quantum cascade lasers. Optical Engineering, 2010, 49(11): 111102.

[18]

Vurgaftman I., Kim M., Kim C. S., Bewley W. W., Canedy C. L., Lindle J. R., . Challenges for mid-IR interband cascade lasers. Novel in-Plane Semiconductor Lasers Ix, 2010, 7616(1): 82-88.

[19]

Li C. G., Dong L., Zheng C. T., Tittel F. K.. Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser. Sensors and Actuators B-Chemical, 2016, 232, 188-194.

[20]

Dong L., Tittel F. K., Li C. G., Sanchez N. P., Wu H. P., Zheng C. T., . Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing. Optics Express, 2016, 24(6): 528-535.

[21]

Jagerska J., Tuzson B., Looser H., Bismuto A., Faist J., Prinz H., . Highly sensitive and fast detection of propane-butane using a 3 μm quantum cascade laser. Applied Optics, 2013, 52(19): 4613-4619.

[22]

Geiser P.. New opportunities in mid-infrared emission control. Sensors (Basel), 2015, 15(9): 22724-22736.

[23]

Reid J., Labrie D.. 2nd-harmonic detection with tunable diode-lasers-comparison of experiment and theory. Applied Physics B–Photophysics and Laser Chemistry, 1981, 26(3): 203-210.

[24]

Hayden T. R. S., Rieker G. B.. Large amplitude wavelength modulation spectroscopy for sensitive measurements of broad absorbers. Optics Express, 2016, 24(24): 27910-27921.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/