SNR Improvement of QEPAS System by Preamplifier Circuit Optimization and Frequency Locked Technique

Qinduan Zhang , Jun Chang , Zongliang Wang , Fupeng Wang , Fengting Jiang , Mengyao Wang

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (2) : 127 -133.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (2) : 127 -133. DOI: 10.1007/s13320-018-0468-y
Regular

SNR Improvement of QEPAS System by Preamplifier Circuit Optimization and Frequency Locked Technique

Author information +
History +
PDF

Abstract

Preamplifier circuit noise is of great importance in quartz enhanced photoacoustic spectroscopy (QEPAS) system. In this paper, several noise sources are evaluated and discussed in detail. Based on the noise characteristics, the corresponding noise reduction method is proposed. In addition, a frequency locked technique is introduced to further optimize the QEPAS system noise and improve signal, which achieves a better performance than the conventional frequency scan method. As a result, the signal-to-noise ratio (SNR) could be increased 14 times by utilizing frequency locked technique and numerical averaging technique in the QEPAS system for water vapor detection.

Keywords

QEPAS system / preamplifier circuit / frequency locked method / noise optimization

Cite this article

Download citation ▾
Qinduan Zhang, Jun Chang, Zongliang Wang, Fupeng Wang, Fengting Jiang, Mengyao Wang. SNR Improvement of QEPAS System by Preamplifier Circuit Optimization and Frequency Locked Technique. Photonic Sensors, 2017, 8(2): 127-133 DOI:10.1007/s13320-018-0468-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schippers W., Gershnabel E., Burgmeier J., Katz O., Willer U., Averbukh I. S., . Stimulated Raman rotational photoacoustic spectroscopy using a quartz tuning fork and femtosecond excitation. Applied Physics B, 2011, 105(2): 203-211.

[2]

Liu Y. N., Chang J., Lian J., Liu Z. J., Wang Q., Zhu C. G.. A time difference method for measurement of phase shift between distributed feedback laser diode (DFB-LD) output wavelength and intensity. Sensors, 2015, 15(7): 16153-16161.

[3]

Liu Y. N., Chang J., Lian J., Liu Z. J., Wang Q., Qin Z. G.. Quartz-enhanced photoacoustic spectroscopy with right-angle prism. Sensors, 2016, 16(2): 1-7.

[4]

Kosterev A. A., Tittel F. K., Serebryakov D. V., Malinovsky A. L., Morozov I. V.. Applications of quartz tuning fork in spectroscopic gas sensing. Review of Scientific Instruments, 2005, 76(4): 043105.

[5]

Zhang Q. D., Chang J., Wang F. P., Wang Z. L., Xie Y. L., Gong W. H.. Improvement in QEPAS system utilizing a second harmonic based wavelength calibration technique. Optics Communications, 2018, 415, 25-30.

[6]

Matsui K.. OPA application skills 100 cases, 2006 65-75.

[7]

Kay A.. Analysis and measurement of intrinsic noise in op amp circuits. Global Electronics China, 2010, 6, 41-44.

[8]

Patimisco P., Scamarcio G., Tittel F. K., Spagnolo V.. Quartz-enhanced photoacoustic spectroscopy: a review. Sensors, 2014, 14(4): 6165-6206.

[9]

Grober R. D., Acimovic J., Schuck J., Hessman D., Kindlemann P. J., Hespanha J., . Fundamental limits to force detection using quartz tuning forks. Review of Scientific Instruments, 2000, 71(7): 2776-2780.

[10]

Kosterev A. A., Bakhirkin Y. A., Tittel F. K.. Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental, molecular absorption bands region. Applied Physics B, 2005, 80(1): 133-138.

[11]

Kosterev A. A., Bakhirkin Y. A., Curl R. F., Tittel F. K.. Quartz-enhanced photoacoustic spectroscopy. Optics Letters, 2002, 27(21): 1902-1904.

[12]

Chen X., Chang J., Wang F. P., Wang Z. L., Wei W., Liu Y. Y., . A^portable analog lock-in amplifier for accurate phase measurement and application in high-precision optical oxygen concentration detection. Photonic Sensors, 2017, 7(1): 27-36.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/