Laser Spot Center Detection and Comparison Test

Jun Zhu , Zhengjie Xu , Deli Fu , Cong Hu

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 49 -52.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (1) : 49 -52. DOI: 10.1007/s13320-018-0432-x
Regular

Laser Spot Center Detection and Comparison Test

Author information +
History +
PDF

Abstract

High efficiency and precision of the pot center detection are the foundations of avionics instrument navigation and optics measurement basis for many applications. It has noticeable impact on overall system performance. Among them, laser spot detection is very important in the optical measurement technology. In order to improve the low accuracy of the spot center position, the algorithm is improved on the basis of the circle fitting. The pretreatment is used by circle fitting, and the improved adaptive denoising filter for TV repair technology can effectively improves the accuracy of the spot center position. At the same time, the pretreatment and de-noising can effectively reduce the influence of Gaussian white noise, which enhances the anti-jamming capability.

Keywords

Spot / TV repair technology / spot center

Cite this article

Download citation ▾
Jun Zhu, Zhengjie Xu, Deli Fu, Cong Hu. Laser Spot Center Detection and Comparison Test. Photonic Sensors, 2018, 9(1): 49-52 DOI:10.1007/s13320-018-0432-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu Z. K., Li G. K., Wang W. T., Yang X., Tang X. J., Jiang D. S.. Algorithm of laser spot detection based on circle fitting. Infrared and Laser Engineering, 2002, 36(3): 276-279.

[2]

Kong B., Wang Z., Tan Y. S.. Algorithm of laser spot detection based on circle fitting. Infrared and Laser Engineering, 2002, 36(3): 276-279.

[3]

Jiang B., Rahman Z.. Noise reduction using multi-resolution edge analysis. SPIE, 2009, 7245, 724507-1–724507–11.

[4]

Weeks A. R., Kasparis T., Kief B.. Adaptive median filter for the removal of periodic interference from an image. SPIE, 1994, 2238(022): 207-217.

[5]

Bigeon J., Liepvre S. L., Vassant S., Belabas N., Bardou N., Minot C., . Strong coupling between self-assembled molecules and surface plasmon polaritons. Journal of Physical Chemistry Letters, 2017, 8(22): 5626-5632.

[6]

Gan F. Y., Wang Y. J., Sun C. W., Zhang G. R., Li H. Y., Chen J. J., . Widely tuning surface plasmon polaritons with laser-induced bubbles. Advanced Optical Materials, 2017, 5(4): 1600545-1–1600545–7.

[7]

Wang W., Gao S. S., Meng Y.. Transmission characteristics of surface plasmon polaritons in ‘–’-shaped resonator. Acta Physica Sinica, 2017, 66, 017301-1–017301–5.

[8]

Yang Y. Q., Shi R., Yu X. N., Gao T. N.. An algorithm to raise the locating precision of laser spot center based on Hough transform. Acta Optica Sinica, 1999, 19(12): 1655-1660.

[9]

Cui J. W., Tan J. B., Ao L., Kang W. J.. Optimized algorithm of laser spot center location in strong noise, 2005, 13(1): 312-315.

[10]

Hashimoto T., Yagami F., Owada M., Sugawara T., Kawamura M.. Salt preference according to a questionnaire vs. dietary salt intake estimated by a spot urine method in participants at a health check-up center. Internal Medicine, 2008, 47(5): 399-403.

[11]

Wang L. L., Hu Z. W., Ji H. X.. Laser spot center location algorithm based on Gaussian fitting. Journal of Applied Optics, 2012, 33(05): 985-990.

[12]

Cui J. W., Tan J. B., Ao L., Kang W. J.. Optimized algorithm of laser spot center location in strong noise. Journal of Physics, 2005, 13, 312-315.

[13]

Xu Y. M., Xing C., Liu G. L.. Comparisons of several methods of laser spot center detection. Hydrographic Surveying & Charting, 2007, 27(2): 74-76.

[14]

Lan Z. L., Yang X. F.. Practical improvement of laser spot center location algorithm. Computer Engineering, 2008, 34(6): 7-9.

[15]

Zheng Y.. Subpixel location of the center of laser spot based on spatial moments. Laser & Infrared, 2005, 7, 521-523.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/