Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer

Alaa N. Abu Helal , Sofyan A. Taya , Khitam Y. Elwasife

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (2) : 176 -187.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (2) : 176 -187. DOI: 10.1007/s13320-018-0414-z
Regular

Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer

Author information +
History +
PDF

Abstract

The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in which the claddings are chiral materials and the core layer is negative index material, is derived. Normalized cut-off frequencies, field profile, and energies flow of right-handed and left-handed circularly polarized modes are derived and plotted. We consider both odd and even guided modes. Numerical results of guided low-order modes are provided. Some novel features, such as abnormal dispersion curves, are found.

Keywords

Slab waveguides / chiral materials / left-handed materials

Cite this article

Download citation ▾
Alaa N. Abu Helal, Sofyan A. Taya, Khitam Y. Elwasife. Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer. Photonic Sensors, 2017, 8(2): 176-187 DOI:10.1007/s13320-018-0414-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Veselago V.. The electrodynamics of substances with simultaneously negative values of ε and µ. Soviet Physics Uspekhi, 1968, 10(4): 509-514.

[2]

Kullab H. M., Qadoura I. M., Taya S. A.. Slab waveguide sensor with left-handed material core layer for detection an adlayer thickness and index. Journal of Nano-and Electronic and Physics, 2015, 7(2): 1-6.

[3]

Chen H., Wu B. I., Kong J. A.. Review of electromagnetic theory in left-handed materials. Journal of Electromagnetic Waves & Applications, 2006, 20(15): 2137-2151.

[4]

Taya S. A., El-Farram E. J., Abadla M. M.. Symmetric multilayer slab waveguide structure with a negative index material: TM case. Optik-Internal Journal for Light and Electron Optics, 2012, 123(24): 2264-2268.

[5]

Taya S. A., Qadoura I. M.. Guided modes in slab waveguides with negative index cladding and substrate. Optik–Internal Journal for Light and Electron Optics, 2013, 124(13): 1431-1436.

[6]

Qiu C. W., Li L. W., Burokur N., Zouhd S.. Chiral nihility effects on energy flow in chiral materials. Journal of the Optical Society of America A: Optics Image Science & Vision, 2008, 25(1): 55-63.

[7]

Taya S. A., Elwasife K. Y.. Guided modes in a metal-clad waveguide comprising a left-handed material as a guiding layer. International Journal of Research & Reviews in Applied Sciences, 2012, 13(1): 294-305.

[8]

Taya S. A., Elwasife K. Y., Kullab H. M.. Dispersion properties of anisotropic-metamaterial slab waveguide structure. Optica Applicata, 2013, 43(4): 857-869.

[9]

Pendry J. B.. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966-3969.

[10]

Qadoura I., Taya S., El-Wasife K.. Scaling rules for a slab waveguide structure comprising nonlinear and negative index materials. International Journal of Microwave & Optical Technology, 2012, 7(5): 349-357.

[11]

Pendry J. B., Holden A. J., Robbins D. J., Stewart W. J.. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084.

[12]

Abadla M. M., Taya S. A.. Characteristics of left-handed multilayer slab waveguide structure. The Islamic University Journal (Series of Natural Studies and Engineering), 2011, 19(1): 57-70.

[13]

Pendry J. B., Holden A. J., Robbins D. J., Stewart W. J.. Low frequency plasmons in thin-wire structures. Journal of Physics-Condensed Matter, 1998, 1(22): 4785-4809.

[14]

Taya S. A., Kullab H. M., Qadoura I. M.. Dispersion properties of slab waveguides with double negative material guiding layer and nonlinear substrate. Journal of the Optical Society of America B: Optical Physics, 2013, 30(7): 2008-2013.

[15]

Gribe A., Eleftheriades G. V.. Growing evanescent waves in negative-refractive index. Applied Physics Letters, 2003, 82(12): 1815-1817.

[16]

Abadla M. M., Taya S. A.. Excitation of TE surface polaritons in different structures comprising a left-handed material and a metal. Optik–Internal Journal for Light and Electron Optics, 2014, 125(3): 1401-1405.

[17]

Qing D. K., Chen G.. Enhancement of evanescent waves in waveguides using metamaterials of negative permittivity and permeability. Applied Physics Letters, 2004, 84(5): 669-671.

[18]

Taya S. A., Elwasife K. Y.. Field profile of asymmetric slab waveguide structure with LHM layers. Journal Nano-and Electronic Physics, 2014, 6(2): 02007-1–02007–5.

[19]

Alu A., Engheta N.. Achieving transparency with plasmonic and metamaterial coatings. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2005, 72, 016623-1–016623–10.

[20]

Taya S. A.. Dispersion properties of lossy, dispersive, and anisotropic left-handed material slab waveguide. Optik–Internal Journal for Light and Electron Optics, 2015, 126(4): 1319-1323.

[21]

Taya S. A., Alamassi D. M.. Reflection and transmission from left-handed material structures using Lorentz and Drude medium models. Opto-Electronics Review, 2015, 23(3): 214-221.

[22]

Lee B. J., Fu C., Park K., Zhang Z. M.. Study of the surface and bulk polaritons with a negative index metamaterial. Journal of the Optical Society of America B: Optical Physic, 2005, 22(5): 1016-1023.

[23]

Shelby R., Smith D., Schultz S.. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77-79.

[24]

Ergin T., Stenger N., Brenner P., Pendry J. B., Wegener M.. Three-dimensional invisibility cloak at optical wavelengths. Science, 2010, 328(5976): 337-339.

[25]

Li L. W., Li Y. N., Yeo T. S., Mosig J. R., Martin O. J. F.. A broadband and high-gain metamaterial microstrip antenna. Applied Physics Letters, 2010, 96(16): 164-165.

[26]

Zhang Z. H., Wang Z. P., Wang L. H.. Design principle of single- or double-layer wave-absorbers containing left-handed materials. Materials and Design, 2009, 30(9): 3908-3912.

[27]

Kullab H., Taya S., El-Agez T.. Metal-clad waveguide sensor using a left-handed material as a core layer. Journal of the Optical Society of America B: Optical Physics, 2102, 29(5): 959-964.

[28]

Kullab H. M., Taya S. A.. Peak type metal-clad waveguide sensor using negative index materials. AEU–Internayional Journal Electronics Communications, 2013, 67(11): 905-992.

[29]

Kullab H. M., Taya S. A.. Transverse magnetic peak type metal-clad optical waveguide sensor. Optik–Internal Journal for Light and Electron Optics, 2014, 125(1): 97-100.

[30]

Taya S. A., Kullab H. M.. Optimization of transverse electric peak type metal-clad waveguide sensor using double negative materials. Applied Physics A, 2014, 116(4): 1841-1846.

[31]

Taya S. A.. Slab waveguide with air core layer and anisotropic left-handed material claddings as a sensor. Opto-Electronics Review, 2014, 22(4): 252-257.

[32]

Taya S. A.. P-polarized surface waves in a slab waveguide with left-handed material for sensing applications. Journal of Magnetism & Magnetic Materials, 2015, 377, 281-285.

[33]

Taya S. A.. Theoretical investigation of slab waveguide sensor using anisotropic metamaterials. Optica Applicata, 2015, 45(3): 405-417.

[34]

Taya S. A., Jarada A. A., Kullab H. M.. Slab waveguide sensor utilizing left-handed material core and substrate layers. Optik–Internal Journal for Light and Electron Optics, 2016, 127(19): 7732-7739.

[35]

Taya S. A., Mahdi S. S., Alkanoo A. A., Qadoura I. M.. Slab waveguide with conducting interfaces as an efficient optical sensor: TE case. Optica Acta International Journal of Optics, 2017, 64(8): 836-843.

[36]

Taya S. A., Shaheen S. A., Alkanoo A. A.. Photonic crystal as a refractometric sensor operated in reflection mode. Superlattices and Microstructures, 2017, 101, 299-305.

[37]

Dong J. F., Xu C.. Characteristics of guided modes in planner chiral nihility meta-material waveguides. Progress In Electromagnetic Research B, 2009, 14, 107-126.

[38]

Pelet P., Engheta N.. The theory of chirowaveguides. IEEE Transactions on Antennas and Propagation, 1990, 38(1): 90-98.

[39]

Oksanen M., Kolivisto P., lindell I.. Dispersion curves and fields for a chiral slab waveguide. IEEE Proceedings H-Microwaves, Antennas and Propagation, 1991, 138(4): 327-344.

[40]

Xiao J., Zhang K., Gong L.. Field analysis of a general chiral planer waveguide. International Journal of lnfrared and Millimeter Waves, 1997, 18(4): 939-948.

[41]

Yokota M., Yamanaka Y.. Dispersion relation and field distribution for a chiral slab waveguide. International Journal of Microwave and Optical Technology, 2006, 1, 623-627.

[42]

Zhao R., Koschny T., Soukoulis C. M.. Chiral metamaterials: retrieval of the effective parameters with and without substrate. Optics Express, 2010, 18(14): 553-567.

[43]

Dong J. F., Li J.. Characteristics of guided modes in uniaxial chiral circular waveguides. Progress In Electromagnetics Research, 2012, 124(124): 331-345.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/