One novel type of miniaturization FBG rotation angle sensor with high measurement precision and temperature self-compensation

Shanchao Jiang , Jing Wang , Qingmei Sui

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (1) : 88 -96.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (1) : 88 -96. DOI: 10.1007/s13320-017-0483-4
Regular

One novel type of miniaturization FBG rotation angle sensor with high measurement precision and temperature self-compensation

Author information +
History +
PDF

Abstract

In order to achieve rotation angle measurement, one novel type of miniaturization fiber Bragg grating (FBG) rotation angle sensor with high measurement precision and temperature self-compensation is proposed and studied in this paper. The FBG rotation angle sensor mainly contains two core sensitivity elements (FBG1 and FBG2), triangular cantilever beam, and rotation angle transfer element. In theory, the proposed sensor can achieve temperature self-compensation by complementation of the two core sensitivity elements (FBG1 and FBG2), and it has a boundless angel measurement range with 2π rad period duo to the function of the rotation angle transfer element. Based on introducing the joint working processes, the theory calculation model of the FBG rotation angel sensor is established, and the calibration experiment on one prototype is also carried out to obtain its measurement performance. After experimental data analyses, the measurement precision of the FBG rotation angle sensor prototype is 0.2 ° with excellent linearity, and the temperature sensitivities of FBG1 and FBG2 are 10 pm/℃ and 10.1 pm/℃, correspondingly. All these experimental results confirm that the FBG rotation angle sensor can achieve large-range angle measurement with high precision and temperature self-compensation.

Keywords

Rotation angle / FBG / temperature self-compensation

Cite this article

Download citation ▾
Shanchao Jiang, Jing Wang, Qingmei Sui. One novel type of miniaturization FBG rotation angle sensor with high measurement precision and temperature self-compensation. Photonic Sensors, 2017, 8(1): 88-96 DOI:10.1007/s13320-017-0483-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen T., Zhou W. Q., Mao Z. H., Lu X., Ye X., Huang T. C., . Analysis of the gyro misalignment angle in goniometer based on fiber optic gyroscope. Optik, 2016, 127(2): 769-772.

[2]

Zhang X. Y., Zhang M. H., Qiao Y. F.. A high precision noncontact position measuring system. Optics & Precision Engineering, 2002, 10(1): 41-44.

[3]

Wen H. M., Ma X. H.. Continuous rotation angles measurrement using video frame images. Proceeding of 2010 International Conference on ICMT, 2010 1-5.

[4]

Avanesov Y. L., Gorokhovsky K. S., Granovskii V. A., Kudryavtsev M. D., Kulachenkov N. K., Angervaks A. E., . Rotation angle measurement device: principle of operation and initial calibration results. Proceeding of 2014 11th International Multi-Conference on SSD, 2014 1-6.

[5]

Kima J. A., Kim J. W., Kang C. S., Jin J. H., Eom T. B.. Absolute angle measurement using a phase-encoded binary graduated disk. Measurement, 2016, 80, 288-293.

[6]

Tao S., Dong X. P., Lai B.. Temperature-insensitive fiber Bragg grating displacement sensor based on a thin-wall ring. Optics Communications, 2016, 372, 44-48.

[7]

Pereira G., McGugan M., Mikkelsen L. P.. Method for independent strain and temperature measurement in polymeric tensile test specimen using embedded FBG^sensors. Polymer Testing, 2016, 50, 125-134.

[8]

Hannusch S., Stockmann M., Ihlemann J.. Experimental method for residual stress analysis with fibre Bragg grating sensors. Materials Today: Proceedings, 2016, 3(4): 979-982.

[9]

Paine R., Beards C., Tucker P., Bacon D. H.. Mechanical engineer’s reference book, 1994, Amsterdam, Holland: Elsevier, 1-48.

[10]

Vandeperre L. J., Wang X., Atkinson A.. Measurement of mechanical properties using slender cantilever beams. Journal of the European Ceramic Society, 2016, 36(8): 2003.

[11]

Serrano A. I. H., Delgado G. S., Hernandez D. M., Rios A. M., Hernandez D. M.. Robust optical fiber bending sensor to measure frequency of vibration. Optics and Lasers in Engineering, 2013, 51(9): 1102-1105.

[12]

Zhang X. L., Wang P., Liang D. K., Fan C. F., Li C. L.. A soft self-repairing for FBG sensor network in SHM system based on PSO-SVR model reconstruction. Optics Communications, 2015, 343, 38-46.

[13]

Cao Y., Liu H. Y., Tong Z. R., Yuan S., Su J.. Simultaneous measurement of temperature and refractive index based on a Mach-Zehnder interferometer cascaded with a fiber Bragg grating. Optics Communications, 2015, 342, 180-183.

[14]

Li C., Ning T. G., Wen X. D., Li J., Zheng J. J., You H. D., . Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects. Optics Communications, 2015, 343, 6-9.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/