Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression

Jian Li , Yunting Li , Mingjiang Zhang , Yi Liu , Jianzhong Zhang , Baoqiang Yan , Dong Wang , Baoquan Jin

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (2) : 103 -113.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (2) : 103 -113. DOI: 10.1007/s13320-017-0474-5
Regular

Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression

Author information +
History +
PDF

Abstract

In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally demonstrate dynamic noise difference algorithm and wavelet transform modulus maximum (WTMM) to de-noising Raman anti-Stokes signal. Experimental results show that the sensing distance can increase from 3 km to 11.5 km and the temperature accuracy increases to 1.58 °C at the sensing distance of 10.4 km.

Keywords

Optical fiber sensors / Raman scattering / noise suppression / wavelet transform modulus maximum

Cite this article

Download citation ▾
Jian Li, Yunting Li, Mingjiang Zhang, Yi Liu, Jianzhong Zhang, Baoqiang Yan, Dong Wang, Baoquan Jin. Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression. Photonic Sensors, 2017, 8(2): 103-113 DOI:10.1007/s13320-017-0474-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dakin J. P., Pratt D. J., Bibby G. W., Ross J. N.. Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector. Electronics Letters, 1985, 21(13): 569-570.

[2]

Shen C., Hu C., Gong H., Wang J., Jin Y., Zhang Z.. Distributed optical fiber temperature sensor. Applied in Underground Coal Gasification System, 2010, 7990, 302-303.

[3]

Liu Y., Lei T., Sun Z. H., Wang C., Li T. Y.. Application of distributed optical fiber temperature system in online monitoring and fault diagnosis of smart grid. Proceeding of Asia-Pacific Power and Energy Engineering Conference, 2012 27-29.

[4]

Fernandez A. F., Rodeghiero P., Brichard B., Berghmans F.. Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures. IEEE Transactions on Nuclear Science, 2005, 52(6): 2689-2694.

[5]

Park J., Bolognini G., Lee D., Kim P., Cho P., Pasquale F. D.. Raman-based distributed temperature sensor with simplex coding and link optimization. IEEE Photonics Technology Letters, 2006, 18(17): 1879-1881.

[6]

Sun M., Tang Y. Q., Li J., Dong F. Z.. Study on spatial resolution improvement of distributed temperature sensor system by linear fitting algorithm. Proceeding of the Chinese-Society-for-Optical-Engineering on Applied Optics and Photonics, 2015 5-7.

[7]

Vazquez G. D. B., Martínez O. E., Kunik D.. Distributed temperature sensing using cyclic pseudorandom sequences. IEEE Sensors Journal, 2017, 17(6): 1686-1691.

[8]

Soto M. A., Signorini A., Nannipieri T., Bolognini S., Bolognini G., Pasquale F. D.. Impact of loss variations on double-ended distributed temperature sensors based on Raman anti-Stokes signal only. Journal of Lightwave Technology, 2012, 30(8): 1215-1222.

[9]

Wang W. J., Chang J., Lv G. P., Wang Z. L., Liu Z., Luo S., . Wavelength dispersion analysis on fiber-optic Raman distributed temperature sensor system. Photonic Sensors, 2013, 3(3): 256-261.

[10]

Hwang D., Yoon D. J., Kwon I. B., Seo D. C., Chung Y.. Novel auto-correction method in a fiber-optic distributed-temperature sensor using reflected anti-Stokes Raman scattering. Optics Express, 2010, 18(10): 9747-9754.

[11]

Soto M. A., Signorini A., Nannipieri T., Faralli S., Bolognini G.. High-performance Raman-based distributed fiber-optic sensing under a loop scheme using anti-stokes light only. IEEE Photonics Technology Letters, 2011, 23(9): 534-536.

[12]

Qin Z., Chen L., Bao X.. Continuous wavelet transform for non-stationary vibration detection with phase-OTDR. Optics Express, 2012, 20(18): 20459-20465.

[13]

Ma C. Y., Liu T. G., Liu K., Jiang J. F., Ding Z. Y., Huang X. D., . A Continuous wavelet transform based time delay estimation method for long range fiber interferometric vibration sensor. Journal of Lightwave Technology, 2016, 34(16): 3785-3789.

[14]

Hu Y., Mo W. Q., Dong K. F., Jin F., Song J. L.. Using maximum spectrum of continuous wavelet transform for demodulation of an overlapped spectrum in a fiber Bragg grating sensor network. Applied Optics, 2016, 55(17): 4670-4675.

[15]

Feng X., Zhang X. T., Sun C. G., Motamedi M. H., Ansari F.. Stationary wavelet transform method for distributed detection of damage by fiber-optic sensors. American Society of Civil Engineers, 2014, 140(4): 1.

[16]

Farahani M. A., Wylie M. T. V., Castillo-Guerra E., Colpitts B. G.. Reduction in the number of averages required in BOTDA sensors using wavelet denoising techniques. Journal of Lightwave Technology, 2012, 30(8): 1134-1142.

[17]

Wang Z., Chang J., Zhang S., Luo S., Jia C., Jiang S.. An improved denoising method in RDTS based on wavelet transform modulus maxima. IEEE Sensors Journal, 2015, 15(2): 1061-1067.

[18]

Wang Z. L., Chang J., Zhang S. S., Luo S., Jia C. W., Jia C. W., . Application of wavelet transform modulus maxima in Raman distributed temperature sensors. Photonic Sensors, 2014, 4(2): 142-146.

[19]

Soto M. A., Nannipieri T., Signorini A., Lazzeri A., Baronti F., Roncella R., . Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding. Optics Letters, 2011, 36(13): 2557-2559.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/