Influence of annealing on X-ray radiation sensing properties of TiO2 thin film

M. P. Sarma , J. M. Kalita , G. Wary

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (1) : 70 -79.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (1) : 70 -79. DOI: 10.1007/s13320-017-0473-6
Regular

Influence of annealing on X-ray radiation sensing properties of TiO2 thin film

Author information +
History +
PDF

Abstract

A recent study shows that the titanium dioxide (TiO2) thin film synthesised by a chemical bath deposition technique is a very useful material for the X-ray radiation sensor. In this work, we reported the influence of annealing on the X-ray radiation detection sensitivity of the TiO2 film. The films were annealed at 333 K, 363 K, 393 K, 473 K, and 573 K for 1 hour. Structural analyses showed that the microstrain and dislocation density decreased whereas the average crystallite size increased with annealing. The band gap of the films also decreased from 3.26 eV to 3.10 eV after annealing. The I-V characteristics record under the dark condition and under the X-ray irradiation showed that the conductivity increased with annealing. The influence of annealing on the detection sensitivity was negligible if the bias voltage applied across the films was low (within 0.2 V‒1.0 V). At higher bias voltage (>1.0 V), the contribution of electrons excited by X-ray became less significant which affected the detection sensitivity.

Keywords

Titanium dioxide (TiO2) / thin film / annealing / X-ray / sensor

Cite this article

Download citation ▾
M. P. Sarma, J. M. Kalita, G. Wary. Influence of annealing on X-ray radiation sensing properties of TiO2 thin film. Photonic Sensors, 2017, 8(1): 70-79 DOI:10.1007/s13320-017-0473-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu Y., Gorla C. R., Liang S., Emanetoglu N., Lu Y., Shen H., . Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD. Journal of Electronic Materials, 2000, 29(1): 69-74.

[2]

Saito Y., Kambe S., Kitamura T., Wada Y., Yanagida S.. Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells. Solar Energy Materials & Solar Cells, 2004, 83(1): 1-13.

[3]

Okuya M., Shiozaki K., Horikawa N., Kosugi T., Kumara G. R. A., Madarasz J., . Porous TiO2 thin films prepared by spray pyrolysis deposition (SPD) technique and their application to UV^sensors. Solid State Ionics, 2004, 172(1–4): 527-531.

[4]

Fu Y., Cao W. H.. Preparation of transparent TiO2 nanocrystalline film for UV^sensor. Chinese Science Bulletin, 2006, 51(14): 1657-1661.

[5]

Xing J., Wei H. Y., Guo E. J., Yang F.. Highly sensitive fast-response UV^photodetectors based on epitaxial TiO2 films. Journal of Physics D: Applied Physics, 2011, 44(37): 375104.

[6]

Naceur J. B., Gaidi M., Bousbih F., Mechiakh R., Chtourou R.. Annealing effects on microstructural and optical properties of nanostructured-TiO2 thin films prepared by sole gel technique. Current Applied Physics, 2012, 12, 422-428.

[7]

Schiavello M.. Heterogeneous photocatalysis, Wiley Series in Photoscience and Photoengineering, 1997 1-208.

[8]

Duenas S., Castan H., Garcia H., Andres E. S., Luque M. T., Martil I., . A comparative study of the electrical properties of TiO2 films grown by high-pressure reactive sputtering and atomic layer deposition. Semiconductor Science & Technology, 2005, 20(10): 1044-1051.

[9]

Mane R. S., Hwang Y. H., Lokhande C. D., Sartale S. D., Han S. H.. Room temperature synthesis of compact TiO2 thin films for 3-D^solar cells by chemical arrested route. Applied Surface Science, 2005, 246(1–3): 271-278.

[10]

Darzi S. J., Mahjoub A. R., Nilchi A.. Investigation of structural, optical and photocatalytic properties of mesoporous TiO2 thin film synthesized by sol-gel templating technique. Physica E: Low-dimensional Systems and Nanostructures, 2009, 42(2): 176-181.

[11]

Shimizu Y., Egashira M.. Basic aspects and challenges of semiconductor gas sensors. MRS Bulletin, 1999, 24(6): 18-24.

[12]

Matsumtao Y., Murakami M., Shona T., Hasegawa T., Fukumura T., Kawasaki M., . Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science, 2001, 291(5505): 854-856.

[13]

Kulkarni A. N., Prasad M. B. R., Pathan H. M., Patil R. S.. TiO2 photoanode sensitized with nanocrystalline Bi2S3: the effect of sensitization time and annealing on its photovoltaic performance. Applied Nanoscience, 2016, 6(4): 567-574.

[14]

Qi H. F., Liu D. B., Sun F. L.. The fabrication and characterization of TiO2 UV detector. Proceeding of 28th Int. Congress of the Aeronautical Sciences, 2012 60-69.

[15]

Sarma M. P., Kalita J. M., Wary G.. Chemical bath deposited nanocrystalline TiO2 thin film as X-ray radiation sensor. Materials Research Express, 2017, 4(4): 045005.

[16]

Lin C. P., Chen H., Nakaruk A., Koshy P., Sorrell C. C.. Effect of annealing temperature on the photocatalytic activity of TiO2 thin films energy. Energy Procedia, 2013, 34, 627-636.

[17]

Zulkefle M. A., Rahman R. A., Yusoff K. A., Abdullah W. F. H., Rusop M., Herman S. H.. Post-deposition annealing temperature dependence TiO2-based EGFET pH sensor sensitivity. Proceeding of International Conference on Nano-Electronic Technology Devices and Materials, 2015 1-20.

[18]

Yao P. C., Lee M. C., Chiang J. L.. Annealing effect of sol-gel TiO2 thin film on pH-EGFET sensor. Proceeding of International Symposium on Computer, Consumer and Control (IS3C), 2014 577-580.

[19]

Cullity B. D.. Elements of X-ray diffraction, 1978, London, England: Addison-Wesley Publishing Co., Inc, 1-664.

[20]

Williamson G. K., Hall W. H.. X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1953, 1(1): 22-31.

[21]

Williamson G. K., Smallman R. E.. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philosophical Magazine Series 1, 1956, 1(1): 34-46.

[22]

Caglar Y., Ilican S., Caglar M., Yakuphanoglu F., Wu J., Gao K.. Influence of heat treatment on the nanocrystalline structure of ZnO^film deposited on p-Si. Journal of Alloys & Compounds, 2009, 481(1): 885-889.

[23]

Sengupta J., Sahoo R. K., Bardhan K. K., Mukheijee C. D.. Influence of annealing temperature on the structural, topographical and optical properties of sol-gel derived ZnO thin films. Materials Letters, 2011, 65(17): 2572-2574.

[24]

Tauc J., Grigorovici R., Vancu A.. Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 1968, 3(1): 37-46.

[25]

Ahn H., Um Y.. Post-annealing effects on ZnS^thin films grown by using the CBD method. Journal of the Korean Physical Society, 2015, 67(6): 1045-1050.

[26]

Pankove J. I.. Optical processes in semiconductors, 1971, New York, USA: Dover Publications, 36-94.

[27]

Smith G. X. R., Crook R., Wadhawan J. D.. Measuring the work function of TiO2 nanotubes using illuminated electrostatic force microscopy. Journal of Physics: Conference Series, 2013, 471, 012045.

[28]

Sarma M. P., Kalita J. M., Wary G.. Chemically deposited ZnS^thin film as potential X-ray radiation sensor. Materials Science in Semiconductor Processing, 2017, 61, 131-136.

[29]

Sarma M. P., Kalita J. M., Wary G.. X-ray radiation sensing properties of ZnS^thin film: a study on the effect of annealing. Chinese Physics Letters, 2017, 34(7): 262-265.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/