Detection of gain enhancement in laser-induced fluorescence of rhodamine B lasing dye by silicon dioxide nanostructures-coated cavity

Mohammed N. A. Al-Tameemi

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (1) : 80 -87.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (1) : 80 -87. DOI: 10.1007/s13320-017-0462-9
Regular

Detection of gain enhancement in laser-induced fluorescence of rhodamine B lasing dye by silicon dioxide nanostructures-coated cavity

Author information +
History +
PDF

Abstract

In this work, nanostructured silicon dioxide films are deposited by closed-field unbalanced direct-current (DC) reactive magnetron sputtering technique on two sides of quartz cells containing rhodamine B dye dissolved in ethanol with 10‒5 M concentration as a random gain medium. The preparation conditions are optimized to prepare highly pure SiO2 nanostructures with a minimum particle size of about 20 nm. The effect of SiO2 films as external cavity for the random gain medium is determined by the laser-induced fluorescence of this medium, and an increase of about 200% in intensity is observed after the deposition of nanostructured SiO2 thin films on two sides of the dye cell.

Keywords

Silicon dioxide / nanostructures / gain enhancement / rhodamine B dye

Cite this article

Download citation ▾
Mohammed N. A. Al-Tameemi. Detection of gain enhancement in laser-induced fluorescence of rhodamine B lasing dye by silicon dioxide nanostructures-coated cavity. Photonic Sensors, 2017, 8(1): 80-87 DOI:10.1007/s13320-017-0462-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen Y. Y., Jin G.. Refractive index and thickness analysis of natural silicon dioxide film growing on silicon with variable-angle spectroscopic ellipsometry. Spectroscopy, 2006, 21(10): 26-31.

[2]

Ranjgar A., Norouzi R., Zolanvari A., Sadeghi H.. Characterization and optical absorption properties of plasmonic nanostructured thin films. Armenian Journal of Physics, 2013, 6(4): 198-203.

[3]

Hamadi O. A.. Characteristics of CdO-Si heterostructure produced by plasma-induced bonding technique. Proceedings of the Institution of Mechanical Engineers Part L: Journal of Materials Design & Applications, 2008, 222(L1): 65-71.

[4]

Tabata A., Matsuno N., Suzuoki Y., Mizutani T.. Optical properties and structure of SiO2 films prepared by ion-beam sputtering. Thin Solid Films, 1996 289.

[5]

Anber A. A., Kadhim F. J.. Preparation of nanostructured SixN1-x thin films by DC^reactive magnetron sputtering for tribology applications. Silicon, 2017, 2017(2): 1-4.

[6]

Issa A. A.. The effect of annealing on nano-topography of SiO2 film. Rafidain Journal of Science, 2014, 25(2): 74-86.

[7]

Haider A. J.. The effect of some experimental parameters on the properties of porous silicon. Iraqi Journal of Applied Physics, 2008, 4(1): 37-40.

[8]

Alexandrov S. E., McSporran N., Hitchman M. L.. Remote AP-PECVD^of silicon dioxide films from hexamethyldisiloxane (HMDSO). Chemical Vapor Deposition, 2005, 11(11–12): 481-490.

[9]

Bang S. B., Chung T. H., Kim Y., Kang M. S., Kim J. K.. Effects of the oxygen fraction and substrate bias power on the electrical and optical properties of silicon oxide films by plasma enhanced chemical vapour deposition using TMOS/O2 gas. Journal of Physics D: Applied Physics, 2004, 37(12): 1679-1684.

[10]

Choi J. K., Kim D. H., Lee J., Yoo J. B.. Effects of process parameters on the growth of thick SiO2 using plasma enhanced chemical vapor deposition with hexamethyldisilazane. Surface & Coatings Technology, 2000, 131(1): 136-140.

[11]

Hiller D., Zierold R., Bachmann J., Alexe M., Yang Y., Gerlach J. W., . Low temperature silicon dioxide by thermal atomic layer deposition: investigation of material properties. Journal of Applied Physics, 2010, 107(6): 064314.

[12]

Inoue Y., Takai O.. Spectroscopic studies on preparation of silicon oxide films by PECVD using organosilicon compounds. Plasma Sources Science & Technology, 1996, 5(2): 339-343.

[13]

S. Kamiyama, T. Miura, and Y. Nara, “Comparison between SiO2 films deposited by atomic layer deposition with SiH2[N(CH3)2]2 and SiH[N(CH3)2]3 precursors,” Thin Solid Films, 515(4): 1517–1521.

[14]

Klaus J. W., George S. M.. Atomic layer deposition of SiO2 at room temperature using NH3-catalyzed sequential surface reactions. Surface Science, 2000 447.

[15]

Klaus J. W., Ott A. W., Johnson J. M., George S. M.. Atomic layer controlled growth of SiO2 films using binary reaction sequence chemistry. Applied Physics Letters, 1997, 70(9): 1092-1094.

[16]

Klaus J. W., Sneh O., Ott A. W., George S. M.. Atomic layer deposition of SiO2 using catalyzed and uncatalyzed selflimiting surface reactions. Surface Review & Letters, 1999 06.

[17]

Lee J. H., Jeong C. H., Lim J. T., Jo N. G., Kyung S. J., Yeom G. Y.. Characteristic of SiO2 films deposited by using low temperature PECVD^with TEOS/N2/O2. Journal of the Korean Physical Society, 2005, 46, 890-894.

[18]

Lee J. H., Kim U. J., Han C. H., Rha S. K., Lee W. J., Park C. O.. Investigation of silicon oxide thin films prepared by atomic layer deposition using SiH2Cl2 and O3 as the precursors. Japanese Journal of Applied Physics, 2004, 43(3A): L328-L330.

[19]

Lee S. W., Park K., Han B., Son S. H., Rha S. K., Park C. O., . Atomic layer deposition of silicon oxide thin films by alternating exposures to Si2Cl6 and O3. Electrochemical and Solid-State Letters, 2008, 11(7): G23-G26.

[20]

Yu M. P., Qiu H., Chen X. B., Wu P., Tian Y.. Comparative study of the characteristics of Ni films deposited on SiO2/Si(100) by oblique-angle sputtering and conventional sputtering. Thin Solid Films, 2008, 516(21): 7903-7909.

[21]

Hameed M. A., Jabbar Z. M.. Preparation and characterization of silicon dioxide nanostructures by DC reactive closed-field unbalanced magnetron sputtering. Iraqi Journal of Applied Physics, 2016, 12(4): 13-18.

[22]

Dhahir M. K., Khyoon H. A.. Study the effect of PH^variation on the particle size of SiO2 thin films. Iraqi Journal of Applied Physics, 2016, 15, 1-8.

[23]

Mahajan A. M., Patil L. S., Bange J. P., Gautam D. K.. Growth of SiO2 films by TEOS-PECVD system for microelectronics applications. Surface & Coatings Technology, 2004, 183(2): 295-300.

[24]

Hamadi O. A.. Effect of annealing on the electrical characteristics of CdO-Si heterostructure produced by plasma-induced bonding technique. Iraqi Journal of Applied Physics, 2008, 4(3): 34.

[25]

Hammadi O. A., Naji N. E.. Electrical and spectral characterization of CdS/Si heterojunction prepared by plasma-induced bonding. Optical & Quantum Electronics, 2016, 48(8): 1-7.

[26]

Hammadi O. A.. Characteristics of heat-annealed silicon homojunction infrared photodetector fabricated by plasma-assisted technique. Photonic Sensors, 2016, 6(4): 345-350.

[27]

Hammadi O. A.. Characterization of SiC/Si heterojunction fabricated by plasma-induced growth of nanostructured silicon carbide layer on silicon surface. Iraqi Journal of Applied Physics, 2016, 12(2): 9-13.

[28]

Hammadi O. A.. Photovoltaic properties of thermally-grown selenium-doped silicon photodiodes for infrared detection applications. Photonic Sensors, 2015, 5(2): 152-158.

[29]

Hammadi O. A., Khalaf M. K., Kadhim F. J.. Fabrication and characterization of UV photodetectors based on silicon nitride nanostructures prepared by magnetron sputtering. Proceedings of the Institution of Mechanical Engineers Part N: Journal of Nanoengineering & Nanosystems, 2015, 230(1): 32-36.

[30]

Hammadi O. A., Khalaf M. K., Kadhim F. J.. Fabrication of UV^photodetector from nickel oxide nanoparticles deposited on silicon substrate by closed-field unbalanced dual magnetron sputtering techniques. Optical & Quantum Electronics, 2015, 47(12): 3805-3813.

[31]

Pan P.. The composition and properties of PECVD^silicon oxide films. Applied Physics Letters, 1985, 132(8): 2012-2019.

[32]

Zayed S. M., Alshimy A. M., Fahmy A. E.. Effect of surface treated silicon dioxide nanoparticles on some mechanical properties of maxillofacial silicone elastomer. International Journal of Biomaterials, 2014, 2014, 1-7.

[33]

Hammadi O. A., Khalaf M. K., Kadhim F. J.. Silicon nitride nanostructures prepared by reactive sputtering using closed-field unbalanced dual magnetrons. Proceedings of the Institution of Mechanical Engineers Part L: Journal of Materials Design & Applications, 2017, 231(5): 479-487.

[34]

Hammadi O. A., Khalaf M. K., Kadhim F. J., Chiad B. T.. Operation characteristics of a closed-field unbalanced dual-magnetrons plasma sputtering system. Bulgarian Journal of Physics, 2014, 41(1): 24-33.

[35]

Sulaiman S. T., Al-Jammal Y. N., Issa A. A.. The growth and investigation of interface of SiO2/Si by anodic oxidation technique using acetic acid medium. Rafidain Journal of Science, 2012, 23(4): 117-126.

[36]

Suzuki I., Dussarrat C., Yanagita K.. Extra low-temperature SiO2 deposition using aminosilanes. Ecs Transactions, 2007, 3(15): 119-128.

[37]

Tamura T., Ishibashi S., Tanaka S., Kohyama M., Lee M. H.. First-principles analysis of optical absorption edge in pure and fluorine-doped SiO2 glass. Computational Materials Science, 2008, 44(1): 61-66.

[38]

Wu W. F., Chiou B. S.. Optical and mechanical properties of reactively sputtered silicon dioxide films. Semiconductor Science & Technology, 1996, 11(9): 1317-1321.

[39]

Chen Y., Jin G.. Refractive index and thickness analysis of natural silicon dioxide film growing on silicon with variable-angle spectroscopic ellipsometry. Spectroscopy, 2006, 21(10): 26-31.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/