Sensitivity enhancement of nonlinear waveguide sensors with conducting graphene layer: TE mode

Hala J. El-Khozondar , Mohammed M. Shabat , Rana Khlifa

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (1) : 29 -33.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (1) : 29 -33. DOI: 10.1007/s13320-017-0456-7
Regular

Sensitivity enhancement of nonlinear waveguide sensors with conducting graphene layer: TE mode

Author information +
History +
PDF

Abstract

We propose a three-layer waveguide sensor. The proposed sensor consists of a graphene thin layer with constant conductivity at the interface between air and dielectric media with thickness d sitting above a nonlinear layer. The sensitivity of the sensor is derived from the dispersion equation. The sensitivity is calculated for both TE0 and TE1. Results show that the sensitivity of the proposed sensor depends on the conductivity of the graphene layer, the angular frequency, and the thickness of the dielectric layer.

Keywords

Graphene / nonlinear Kerr like materials / optical sensor / waveguide sensor

Cite this article

Download citation ▾
Hala J. El-Khozondar, Mohammed M. Shabat, Rana Khlifa. Sensitivity enhancement of nonlinear waveguide sensors with conducting graphene layer: TE mode. Photonic Sensors, 2017, 8(1): 29-33 DOI:10.1007/s13320-017-0456-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Potyrailo R. A., Hobbs S. E., Hieftje G. M.. Near-ultraviolet evanescent-wave absorption sensor based on a multimode optical fiber. Analytical Chemistry, 1998, 70(8): 1639-1645.

[2]

Xu L., Fanuy J. C., SSoni K., Tao S. Q.. Optical fiber humidity sensor based on evanescent-wave scattering. Optics Letters, 2004, 29(11): 1191-1193.

[3]

Remley K. A., Weisshaar A.. Design and analysis of a silicon-based antiresonant reflecting optical waveguide chemical sensors. Optics Letters, 1996, 21(16): 1241-1243.

[4]

Tiefenthaler K., Lukoz W.. Sensitivity of grating couples as integrated optical chemical sensors. Journal of the Optical Society of America B, 1989, 6(2): 209-220.

[5]

Qing D. K., Yamaguchi I.. Analysis of the sensitivity of optical waveguide chemical sensor for TM^modes by the group-index method. Journal of the Optical Society of America B, 1999, 16(9): 1359-1369.

[6]

Lukosz W.. Integrated optical chemical and direct biochemical sensors. Sensors & Actuators B: Chemical, 1995, 29(1): 37-50.

[7]

Kunz R. E.. Miniature integrated optical modules for chemical and biochemical sensing. Sensors & Actuators B: Chemical, 1997, 38(1–3): 13-28.

[8]

El-Khozondar H. J., El-Khozondar R. J., Zouhdi S.. Tunable MTMs consists of a single-walled nanotube thin film waveguide covered by nonlinear cladding. Applied Physics A, 2015, 119(2): 451-453.

[9]

El-Khozondar H. J., Müller M., El -Khozondar R. J., Shabat M. M., Koch A. W.. Sensitivity of double-negative metamaterial optical sensor. International Journal of Pure and Applied Sciences and Technology, 2012, 11(2): 29-35.

[10]

El-Khozondar R. J., El -Khozondar H. J., Shabat M. M.. Surface wave propagation in ferroelectric/MTMS interface. Integrated Ferroelectrics, 2011, 130(1): 50-57.

[11]

El-Khozondar H. J., El -Khozondar R. J., Shabat M. M.. Temperature dependence of optical nonlinear waveguide sensor on thermal stress effect. Islamic University Journal for Natural Science and Engineering, 2008, 16(2): 29-40.

[12]

El-Khozondar H. J., El-Khozondar R. J.. Temperature sensitivity enhancement of nonlinear optical channel waveguide sensors using thermal-stress effect. Islamic University Journal for Natural Science and Engineering, 2008, 16(2): 15-27.

[13]

El-Khozondar H. J., El -Khozondar R. J., Shabat M. M.. Double-negative metamaterial optical waveguide behavior subjected to stress. Islamic University Journal for Natural Science and Engineering, 2008, 16(1): 9-20.

[14]

El-Khozondar H. J., El -Khozondar R. J., Shabat M. M., Koch A. W.. Stress effect on optical nonlinear waveguide sensor. Journal of Optical Communications, 2007, 28(3): 175-179.

[15]

El-Khozondar R. J., El -Khozondar H. J., Shabat M. M.. Enhancing sensor sensitivity using graphene-MTM^interface. American Journal of Nano Research and Applications, 2017, 4(5): 43-46.

[16]

El-Khozondar H. J., El -Khozondar R. J., Shabat M. M.. Metamaterial-dielectric photonics crystal waveguide structure. Optics, 2015, 4(1–2): 1-4.

[17]

Novoselov K. S., Jiang D., Schedin F., Booth T. J., Khotkevich V. V., Morozov S. V., . Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of USA, 2005, 102(30): 10451-10453.

[18]

Chen L., Ma Z. S., Zhang C.. Vertical absorption edge and temperature dependent resistivity in semihydrogenated graphene. Applied Physics Letters, 2010, 96(2): 023107-1.

[19]

Lee C. G., Wei X. D., Kysar J. W., Hone J.. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 312(5887): 385-388.

[20]

Wright A. R., Xu X. G., Cao J. C., Zhang C.. Strong nonlinear optical response of graphene in the terahertz regime. Applied Physics Letters, 2009, 95(7): 072101.

[21]

Schedin F., Geim A. K., Morozov S. V., Hill E. W., Blake P., Katsnelson M. I., . Detection of individual gas molecules adsorbed on graphene. Nature Materials, 2007, 6(9): 652-655.

[22]

Bludov Y. V., Smirnova D. A., Kivshar Y. S., Peres N. M. R., Vasilevskiy M. I.. Nonlinear TE-polarized surface polaritons on graphene. Physical Review B, 2014, 89, 035406.

[23]

El-Khozondar H. J., El-Khozondar R. J., Shabat M. M.. Dispersion characteristics of graphene surface plasmon four layers waveguide. IUG^Journal of Natural Studies (IUGNES) Special Issue, 2017, 25(2): 263-266.

[24]

El-Khozondar H. J., El -Khozondar R. J., Shabat M. M.. Dispersion characteristics and sensitivity properties of graphene surface plasmon sensor. Sensor Letters, 2017, 15(3): 249-252.

[25]

El-Khozondar R. J., El-Khozondar H. J., Shabat M. M.. Enhancing sensor sensitivity using graphene-MTM^interface. American Journal of Nano Research and Applications, 2016, 4(5): 43-46.

[26]

Wu Y. X., Dai X. Y., Xiang Y. J., Fan D. Y.. Nonlinear TE-polarized SPPs on a graphene cladded parallel plate waveguide. Journal of Applied Physics, 2017, 121(10): 103103.

[27]

Wu Y., Jiang L., Xu H., Dai X., Xiang Y., Fan D.. Hybrid nonlinear surface-phonon-plasmonpolaritons at the interface of nonlinear medium and graphene-covered hexagonal boron nitride crystal. Optics Express, 2016, 24(3): 2109-2124.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/