A micro S-shaped optical fiber temperature sensor based on dislocation fiber splice

Haitao Yan , Pengfei Li , Haojie Zhang , Xiaoyue Shen , Yongzhen Wang

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (4) : 372 -376.

PDF
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (4) : 372 -376. DOI: 10.1007/s13320-017-0450-0
Regular

A micro S-shaped optical fiber temperature sensor based on dislocation fiber splice

Author information +
History +
PDF

Abstract

We fabricated a simple, compact, and stable temperature sensor based on an S-shaped dislocated optical fiber. The dislocation optical fiber has two splice points, and we obtained the optimal parameters based on the theory and our experiment, such as the dislocation amount and length of the dislocation optical fiber. According to the relationship between the temperature and the peak wavelength shift, the temperature of the environment can be obtained. Then, we made this fiber a micro bending as S-shape between the two dislocation points, and the S-shaped micro bending part could release stress with the change in temperature and reduce the effect of stress on the temperature measurement. This structure could solve the problem of sensor distortion caused by the cross response of temperature and stress. We measured the S-shaped dislocation fiber sensor and the dislocation fiber without S-shape under the same environment and conditions, and the S-shaped dislocation fiber had the advantages of the stable reliability and good linearity.

Keywords

Dislocated optical fiber / temperature sensor / interference / cross-sensitivity

Cite this article

Download citation ▾
Haitao Yan, Pengfei Li, Haojie Zhang, Xiaoyue Shen, Yongzhen Wang. A micro S-shaped optical fiber temperature sensor based on dislocation fiber splice. Photonic Sensors, 2016, 7(4): 372-376 DOI:10.1007/s13320-017-0450-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jung I. W., Park B., Provine J., Howe R. T., Solgaard O.. Highly sensitive monolithic silicon photonic crystal fiber tip sensor for simultaneous measurement of refractive index and temperature. Journal of Lightwave Technology, 2011, 29(9): 1367-1374.

[2]

Hua D. X., Uchida M., Kobayashi T.. Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere. Applied Optics, 2005, 44(7): 1305-1314.

[3]

Sun H. Y., Lien S. C., Qiu Z. R., Wang H. C., Mei T., Liu C. W., . Temperature dependence of Raman scattering in bulk 4H-SiC with different carrier concentration. Optics Express, 2013, 21(22): 26475-26482.

[4]

Kezmah M., Donlagic D.. All-fiber low-cost single-point and quasi-distributed evanescent field temperature sensors with extended temperature measurement range, based on standard telecommunication graded index fibers. Applied Optics, 2008, 47(23): 4212-4220.

[5]

Roths J., Andrejevic G., Kuttler R., Süßer M.. Calibration of fiber bragg cryogenic temperature sensors. Optical Fiber Sensors, 2006, 8383(3): 538-555.

[6]

Donlagic D., Lesic M.. All-fiber quasi-distributed polarimetric temperature sensor. Optics Express, 2006, 14(22): 10245-10254.

[7]

He J., Liao C. R., Yang K. M., Liu S., Yin G. L., Sun B., . High-sensitivity temperature sensor based on a coated single-mode fiber loop. Journal of Lightwave Technology, 2015, 33(19): 4019-4026.

[8]

Wang A., Wang G. Z., Murphy K. A., Claus R. O.. Fiber-optic temperature sensors based on differential spectral transmittance/reflectivity and multiplexed sensing systems. Applied Optics, 1995, 34(13): 2295-2300.

[9]

Zhang H., Qiu Y. S., Huang Z. T., Jiang J. Z., Li G. M., Chen H. X., . Temperature and vibration robustness of reflecting all-fiber current sensor using common single-mode fiber. Journal of Lightwave Technology, 2014, 32(22): 3709-3715.

[10]

Stanczyk T., Wysokinski K., Filipowicz M., Tenderenda T., Gibala K., Krisch H., . Electrolytic joints between metal surfaces and metal-coated fibers for application in high temperature optical fiber sensors. Journal of Lightwave Technology, 2015, 33(12): 2480-2485.

[11]

Rizzolo S., Marin E., Morana A., Boukenter A., Ouerdane Y., Cannas M., . Investigation of coating impact on OFDR optical remote fiber-based sensors performances for their integration in high temperature and radiation environments. Journal of Lightwave Technology, 2016, 34(19): 4460-4465.

[12]

Vera E. R., Cordeiro C. M. B., Torres P.. Highly sensitive temperature sensor using a Sagnac loop interferometer based on a side-hole photonic crystal fiber filled with metal. Applied Optics, 2017, 56(2): 156-162.

[13]

Liu G., Han M., Hou W.. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity. Optics Express, 2015, 23(6): 7237-7247.

[14]

Weng S. J., Pei L., Wang J. S., Ning T. G., Li J.. High sensitivity d-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling. Photonics Research, 2017, 5(2): 103-107.

[15]

Yoo W. J., Jang K. W., Seo J. K., Heo J. Y., Moon J. S., Park J. Y., . Development of respiration sensors using plastic optical fiber for respiratory monitoring inside MRI system. Journal of the Optical Society of Korea, 2010, 14(3): 235-239.

[16]

Dong B., Zhou D. P., Wei L.. Temperature insensitive all-fiber compact polarization- maintaining photonic crystal fiber based interferometer and its applications in fiber sensors. Journal of Lightwave Technology, 2101, 28(7): 1011-1015.

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/