Research on adaptive optics image restoration algorithm based on improved joint maximum a posteriori method

Lijuan Zhang , Yang Li , Junnan Wang , Ying Liu

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (1) : 22 -28.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (1) : 22 -28. DOI: 10.1007/s13320-017-0445-x
Regular

Research on adaptive optics image restoration algorithm based on improved joint maximum a posteriori method

Author information +
History +
PDF

Abstract

In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio (PSNR) and Laplacian sum (LS) value than the others. The research results have a certain application values for actual AO image restoration.

Keywords

Image restoration / adaptive optics (AO) / point spread function (PSF) / joint maximum a posteriori (JMAP) / blind deconvolution

Cite this article

Download citation ▾
Lijuan Zhang, Yang Li, Junnan Wang, Ying Liu. Research on adaptive optics image restoration algorithm based on improved joint maximum a posteriori method. Photonic Sensors, 2017, 8(1): 22-28 DOI:10.1007/s13320-017-0445-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Farooq M., Aslam A., Hussain B., Hussain G., Ikram M.. A comparison of image processing techniques for optical interference fringe analysis. Photonic Sensors, 2015, 5(4): 304-311.

[2]

Ayers G. R., Dainty J. C.. Iterative blind deconvolution method and its applications. Optics Letters, 1998, 13(7): 547-549.

[3]

Tian Y., Rao C. H., Wei K.. Adaptive optics image restoration based on frame selection and multi-frame blind deconvolution. Chinese Astronomy and Astrophysics, 2009, 33(2): 223-230.

[4]

Zhang L. J., Yang J. H., Wei S. U., Jiang C. H., Wang X. K., Tan F.. Multi-frame iteration blind deconvolution algorithm based on improved expectation maximization for adaptive optics image restoration. Acta Armamentarii, 2014, 35(11): 1765-1773.

[5]

Yap K. H., Guan L.. Adaptive image restoration based on hierarchical neural network. Optical Engineering, 2000, 39(7): 1877-1890.

[6]

Rao C. H., Shen F., Jiang W. H.. Analysis of closed-loop wavefront residual error of adaptive optical system using the method of power spectrum. Acta Optica Sinica, 2000, 20(1): 68-73.

[7]

Chen B.. The theory and algorithms of adaptive optics image restoration, 2008

[8]

Hussain B., Muhammad T., Rehan M., Aman H., Aslam M., Ikram M., . Fast processing of optical fringe movement in displacement sensors without using an ADC. Photonic Sensors, 2013, 3(3): 241-245.

[9]

Li D. M., Su Z. B., Zhu G., Su W., Zhang L. J.. Research on cross-correlative blur length estimation algorithm in motion blur image. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2016, 1(20): 155-162.

[10]

Tang X. J.. Regularization method for image restoration, 2006

[11]

Allan W.. USC-SIPI Image Database: Version 4, 2017

[12]

Tsumuraya F., Miura N., Baba N.. Iterative blind deconvolution method using Lucy’s algorithm. Astronomy & Astrophysics, 1994, 282(2): 699-706.

[13]

Zhang S. J., Li J. S., Yang Y. W., Zhang Z. M.. Blur identification of turbulence-degraded IR images. Optics and Precision Engineering, 2013, 21(2): 514-520.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/